
Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin
Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND NO. 2011-XXXXP

Crea%ng	
 the	
 Next	
 Genera%on	
 of	
 Stable,	
 Interoperable	
 and	

Performant	
 Simulator	
 –	
 A	
 Call	
 for	
 Open	
 Standards	

Jeremiah	
 Wilke*,	
 Joseph	
 Kenny*,	
 Robert	
 Clay*,	
 Simon	
 Hammond+,	
 	

Arun	
 Rodrigues+,	
 ScoG	
 Hemmert+,	
 James	
 Ang+,	
 Sudhakar	
 Yalamanchilił	

*Sandia	
 CA,	
 +Sandia	
 ABQ,	
 łGeorgia	
 Tech	

	

We	
 need	
 models	
 of	
 varying	
 fidelity	

How	
 many	
 tools	
 do	
 we	
 need	
 for	
 all	
 of	
 them?	

§  High	
 fidelity	

§  What	
 you	
 care	
 about	
 only	
 at	
 exists	
 at	
 cycle-­‐
accurate	
 detail	
 	

§  Cache	
 reuse	
 policies	
 in	
 memory	

§  Flit-­‐level	
 flow	
 control	

§  Valida%on	
 of	
 lower	
 fidelity	
 models	

§  Medium	
 fidelity	

§  Coarse-­‐grained	
 modeling	
 of	
 architecture	
 at	

system	
 scale	

§  Adap%ve	
 rou%ng	
 without	
 flit	
 detail	

§  Scaling	
 of	
 collec%ves	
 with	
 network	
 conges%on	

§  Valida%on	
 of	
 cons%tu%ve	
 models	
 at	
 scale	

§  Cons%tu%ve	
 models	

§  Poten%ally	
 good	
 accuracy	
 with	
 right	
 fiXng	

§  Rapid	
 parameter	
 space	
 explora%on	

2	

We	
 need	
 models	
 of	
 varying	
 fidelity	

How	
 many	
 tools	
 do	
 we	
 need	
 for	
 all	
 of	
 them?	

3	

SST
Structural Simulation Toolkit

We	
 need	
 models	
 of	
 varying	
 fidelity	

How	
 many	
 tools	
 do	
 we	
 need	
 for	
 all	
 of	
 them?	

4	

SST
Sonic Screwdriver Toolchain

How	
 do	
 we	
 defeat	
 the	
 Daleks?	

§  Common	
 Core	

§  Scale	
 up	
 performance	
 =	
 scale	
 up	

performance	
 simula%on	
 =	
 parallel	

simula%on	
 (PDES)	

§  Composability	

§  Define	
 standards	
 for	
 composing	
 models	

that	
 speak	
 same	
 language	
 and	
 share	
 the	

same	
 no%on	
 of	
 %me	
 	

§  Community	

§  Concerted	
 effort	
 to	
 define	
 standards	
 and	

reuse	
 code	

5	

How	
 do	
 we	
 defeat	
 the	
 Daleks?	

§  Common	
 Core	

§  Scale	
 up	
 performance	
 =	
 scale	
 up	

performance	
 simula%on	
 =	
 parallel	

simula%on	
 (PDES)	

§  Composability	

§  Define	
 standards	
 for	
 composing	
 models	

that	
 speak	
 same	
 language	
 and	
 share	
 the	

same	
 no%on	
 of	
 %me	
 	

§  Community	

§  Concerted	
 effort	
 to	
 define	
 standards	
 and	

reuse	
 code	

6	

Virtual()me(

Time(window(

LP(0(

LP(1(

Scheduling(future(events(

What	
 is	
 the	
 major	
 source	
 of	
 suffering	
 in	

parallel	
 discrete	
 event	
 simula%on	
 (PDES)?	

§  Scale	
 up	
 machines	
 =	
 scale	
 up	
 simula%ons	
 of	
 machines	
 =	
 PDES	

§  Need	
 event	
 management	
 and	
 scheduling	

§  Avoid	
 %me-­‐order	
 viola%ons!	

7	

Dependencies
between events

What	
 is	
 the	
 major	
 source	
 of	
 suffering	
 in	

parallel	
 discrete	
 event	
 simula%on?	

8	

Virtual()me(

Time(window(

LP(0(

LP(1(

Scheduling(future(events(

Wall()me(=(2s(

Violation!!!

What	
 is	
 the	
 major	
 source	
 of	
 suffering	
 in	

parallel	
 discrete	
 event	
 simula%on?	

9	

Virtual()me(

Time(window(

LP(0(

LP(1(

Scheduling(future(events(

Wall()me(=(2s(

True	
 for	
 all	
 models	

and	
 fideli0es!	

Virtual()me(

Time(window(

LP(0(

LP(1(

Scheduling(future(events(

What	
 is	
 the	
 major	
 source	
 of	
 suffering	
 in	

parallel	
 discrete	
 event	
 simula%on?	

§  Parallelism	
 possible	
 mainly	
 from	
 lookahead	
 (safe	
 %me	
 window)	

based	
 on	
 virtual	
 latency	
 between	
 components	

10	

Solu%ons	
 to	
 the	
 problem	
 exist,	
 but	
 are	
 	

non-­‐trivial:	
 Why	
 rewrite	
 over	
 and	
 over?	

§  “Naïve”	
 conserva%ve	
 %me-­‐stepping	
 algorithm	

§  Global,	
 collec%ve	
 communica%on	

§  Communica%on	
 op%miza%ons	
 to	
 lower	
 prefactor,	
 but	
 has	
 scalability	
 limits	

11	

LP#2#
Queue# Event#B#

t=17#Lookahead##
δ=10#

tmin=17#tmax=27#

Event#C#
t=10#

Event#D#
T=21#

Local#queue#(LP#0)#

tlocal=7#
Local# Global#

tmax=18#

LP#1#
Queue# Event#A#

T=8#Tmin=8#Tmax=18#

Figure 3. Snapshot of events and timestamps for example conservative PDES
with LP queues

LP#2#
Queue#

Lookahead##
δ=10#

tmin=17#tmax=27#

Event#D#
T=21#

Local#queue#(LP#0)#

tlocal=17#
Local# Global#

tmax=27#

LP#1#
Queue# Event#E#

T=19#Tmin=19#Tmax=29#

Figure 4. Snapshot of events and timestamps for example conservative PDES
with LP queues

checkpointing, the entire application state is saved at regular
intervals, providing a fallback point. In reverse computation,
the entire state is not saved - only an event list is maintained.
When violations occur, the events must provide a “reverse”
mechanism to undo all state changes. Checkpointing induces
a significant overhead even if no time violations occur. Reverse
computation only induces overhead when violations occur. De-
tailed packet-level network simulations have been performed
at very large scales using reverse computation with the ROSS
simulator []. Both checkpointing and reverse computation
present special challenges for our desired simulation mode.
There is a large amount (several TB) of application state to
save when simulating 100K-1M network endpoints, causing
a very high storage and time overhead. Checkpoint strate-
gies may not be feasible. Reverse computation also presents
significant challenges since we want to allow arbitrary code
to be executed on real software stacks. If the simulation
proceeds through a simple and well-defined state machine,
programming reverse computation can be straightforward. A
packet sent that empties a queue, e.g. can be reinserted into
the queue. It is not obvious (or likely even possible) to define
reverse computation for arbitrary code. Thus, despite potential
for increased parallelism with optimistic PDES, we pursue a
conservative strategy here.

Conservative approaches generally operate through event

queues []. Each LP maintains an event queue for every LP
it might receive events from (Figures 3,4). Each event queue
has an associated time stamp indicating the last known virtual
time at the other LP. As an LP receives events on a queue,
the new events advance the timestamp In Figure 3, the local
process (LP 0) has synchronized and received events with the
timestamp t = 8 and t = 17 from the remote LPs 1 and 2.
Because the lookahead is � = 10, LP 0 is guaranteed that LP 1
will not deliver anything new with timestamp less than 18 and
LP 2 will not deliver anything with timestamp less than 27.
The local process can therefore safely run Event C at t = 10,
Event B at t = 17 and advance time until t = 18. The local
process now stalls and is unable to run Event D. In the next
synchronization, LP 0 receives Event E with time t = 19.
It has not received any new messages from LP 2, but it can
still advance its time window until t = 27 and can safely run
Event E and Event D. This scheme requires an LP to regularly
receive events on each queue. If no events are received, the
queue time is never updated and an LP will block waiting for
updates. If such a block occurs, an LP must send so-called
null messages to “request” a time update. Once a new time
update is received, the LP can advance its time window and
run more events.

This scheme can be highly efficient for certain workloads.
Even if there are 100 LPs, each LP might only communi-
cate with, e.g., 3 other neighbors. Only local point-to-point
communication is required to synchronize times rather than a
global communication. When many events are sent between
LPs (i.e null messages are not needed), it also provides some
degree of asynchrony as LPs do not explicitly block waiting on
each other. For our workloads, however, the above algorithm
becomes highly inefficient. In many network topologies and
models, each LP is connected to every other LP, erasing
the benefit of local communication. Furthermore, our simula-
tor emphasizes coarse-grained compute and network models.
Large time gaps often exist between consecutive events, often
much larger than the lookahead. This leads to a pathological
situation in which LPs are consumed sending null messages
back and forth.

while t < t
termination

do
Run all events until t + �
Log event sends to S = {NLP0

events

, NLP0
bytes

, NLP1
events

, . . .}
MPI ReduceScatter with SUM array S
MPI ReduceScatter returns N total

events

, N total

bytes

N left

bytes

= N total

bytes

for msgNum < N total

events

do
MPI Recv(void*, MPI ANY, N left

bytes

)
N left

bytes

= N left

bytes

� msgSize
end for
Determine tlocal

min

MPI Allreduce(tglobal

min

, tlocal

min

)
t = tglobal

min

end while

Here we instead use a global synchronization algorithm.
While in some ways the simplest, it actually represents an
optimization on the event queue framework for workloads en-
countered with macroscale SST. The simulation begins at t = 0
with lookahead � determined from the network parameters. We
consider a simulation with N

lp

logical processes. Within the

Figure 3. Snapshot of events and timestamps for example conservative PDES
with LP queues

LP#2#
Queue# Event#B#

t=17#Lookahead##
δ=10#

tmin=17#tmax=27#

Event#C#
t=10#

Event#D#
T=21#

Local#queue#(LP#0)#

tlocal=7#
Local# Global#

tmax=18#

LP#1#
Queue# Event#A#

T=8#Tmin=8#Tmax=18#

Figure 3. Snapshot of events and timestamps for example conservative PDES
with LP queues

LP#2#
Queue#

Lookahead##
δ=10#

tmin=17#tmax=27#

Event#D#
T=21#

Local#queue#(LP#0)#

tlocal=17#
Local# Global#

tmax=27#

LP#1#
Queue# Event#E#

T=19#Tmin=19#Tmax=29#

Figure 4. Snapshot of events and timestamps for example conservative PDES
with LP queues

checkpointing, the entire application state is saved at regular
intervals, providing a fallback point. In reverse computation,
the entire state is not saved - only an event list is maintained.
When violations occur, the events must provide a “reverse”
mechanism to undo all state changes. Checkpointing induces
a significant overhead even if no time violations occur. Reverse
computation only induces overhead when violations occur. De-
tailed packet-level network simulations have been performed
at very large scales using reverse computation with the ROSS
simulator []. Both checkpointing and reverse computation
present special challenges for our desired simulation mode.
There is a large amount (several TB) of application state to
save when simulating 100K-1M network endpoints, causing
a very high storage and time overhead. Checkpoint strate-
gies may not be feasible. Reverse computation also presents
significant challenges since we want to allow arbitrary code
to be executed on real software stacks. If the simulation
proceeds through a simple and well-defined state machine,
programming reverse computation can be straightforward. A
packet sent that empties a queue, e.g. can be reinserted into
the queue. It is not obvious (or likely even possible) to define
reverse computation for arbitrary code. Thus, despite potential
for increased parallelism with optimistic PDES, we pursue a
conservative strategy here.

Conservative approaches generally operate through event

queues []. Each LP maintains an event queue for every LP
it might receive events from (Figures 3,4). Each event queue
has an associated time stamp indicating the last known virtual
time at the other LP. As an LP receives events on a queue,
the new events advance the timestamp In Figure 3, the local
process (LP 0) has synchronized and received events with the
timestamp t = 8 and t = 17 from the remote LPs 1 and 2.
Because the lookahead is � = 10, LP 0 is guaranteed that LP 1
will not deliver anything new with timestamp less than 18 and
LP 2 will not deliver anything with timestamp less than 27.
The local process can therefore safely run Event C at t = 10,
Event B at t = 17 and advance time until t = 18. The local
process now stalls and is unable to run Event D. In the next
synchronization, LP 0 receives Event E with time t = 19.
It has not received any new messages from LP 2, but it can
still advance its time window until t = 27 and can safely run
Event E and Event D. This scheme requires an LP to regularly
receive events on each queue. If no events are received, the
queue time is never updated and an LP will block waiting for
updates. If such a block occurs, an LP must send so-called
null messages to “request” a time update. Once a new time
update is received, the LP can advance its time window and
run more events.

This scheme can be highly efficient for certain workloads.
Even if there are 100 LPs, each LP might only communi-
cate with, e.g., 3 other neighbors. Only local point-to-point
communication is required to synchronize times rather than a
global communication. When many events are sent between
LPs (i.e null messages are not needed), it also provides some
degree of asynchrony as LPs do not explicitly block waiting on
each other. For our workloads, however, the above algorithm
becomes highly inefficient. In many network topologies and
models, each LP is connected to every other LP, erasing
the benefit of local communication. Furthermore, our simula-
tor emphasizes coarse-grained compute and network models.
Large time gaps often exist between consecutive events, often
much larger than the lookahead. This leads to a pathological
situation in which LPs are consumed sending null messages
back and forth.

while t < t
termination

do
Run all events until t + �
Log event sends to S = {NLP0

events

, NLP0
bytes

, NLP1
events

, . . .}
MPI ReduceScatter with SUM array S
MPI ReduceScatter returns N total

events

, N total

bytes

N left

bytes

= N total

bytes

for msgNum < N total

events

do
MPI Recv(void*, MPI ANY, N left

bytes

)
N left

bytes

= N left

bytes

� msgSize
end for
Determine tlocal

min

MPI Allreduce(tglobal

min

, tlocal

min

)
t = tglobal

min

end while

Here we instead use a global synchronization algorithm.
While in some ways the simplest, it actually represents an
optimization on the event queue framework for workloads en-
countered with macroscale SST. The simulation begins at t = 0
with lookahead � determined from the network parameters. We
consider a simulation with N

lp

logical processes. Within the

Figure 4. Snapshot of events and timestamps for example conservative PDES
with LP queues

induces overhead when violations occur. Detailed packet-level
network simulations have been performed at very large scales
using reverse computation with the ROSS simulator [?], [?].
Both checkpointing and reverse computation present special
challenges for our desired simulation mode. There is a large
amount (several TB) of application state to save when simulat-
ing 100K-1M network endpoints, causing a very high storage
and time overhead. Checkpoint strategies may not be feasible.
Reverse computation also presents significant challenges since
we want to allow arbitrary code to be executed on real software
stacks. If the simulation proceeds through a simple and well-
defined state machine, programming reverse computation can
be straightforward. A packet sent that empties a queue, e.g.
can be placed back into its original position in the queue to
reverse the event. It is not obvious (or likely even possible)
to define reverse computation for arbitrary code. Thus, despite
potential for increased parallelism with optimistic PDES, we
pursue a conservative strategy here.

Conservative approaches generally operate through event
queues [?], [?]. Each LP maintains an event queue for every
LP it might receive events from (Figures ??,??). Each event
queue has an associated time stamp indicating the last known
virtual time at the other LP. As an LP receives events on a
queue, the new events advance the timestamp. In Figure ??,
the local process (LP 0) has synchronized and received events
with the timestamp t = 8 and t = 17 from the remote LPs 1

and 2. Because the lookahead is � = 10, LP 0 is guaranteed
that LP 1 will not deliver anything new with timestamp less
than 18 and LP 2 will not deliver anything with timestamp less
than 27. The local process can therefore safely run event C at
t = 10, event B at t = 17 and advance time until t = 18. The
local process now stalls and is unable to run event D. In the
next synchronization, LP 0 receives event E with time t = 19.
It has not received any new messages from LP 2, but it can
still advance its time window until t = 27 and can safely run
event E and event D. This scheme requires an LP to regularly
receive events on each queue. If no events are received, the
queue time is never updated and an LP will block waiting for
updates. If such a block occurs, an LP must send so-called null
messages to “request” a time update (although methods have
avoiding null messages have been proposed [?]). Once a new
time update is received, the LP can advance its time window
and run more events.

This scheme can be highly efficient for certain workloads.
Even if there are 100 LPs, each LP might only communicate
with, e.g., 3 other neighbors. Only local point-to-point commu-
nication is required to synchronize times rather than a global
communication. When many events are sent between LPs (i.e
null messages not needed), it also provides some asynchrony
as LPs do not explicitly block waiting on each other.

For our workloads, however, the above algorithm becomes
highly inefficient. In many network topologies and models,
each LP is connected to every other LP, erasing the benefit of
local communication. Furthermore, our simulator emphasizes
coarse-grained compute and network models. Large time gaps
often exist between consecutive events, often much larger than
the lookahead. This leads to a pathological situation in which
LPs are consumed sending null messages back and forth.

while t < t
termination

do
Run all events until t + �
Log event sends to S = {NLP0

events

, NLP0
bytes

, NLP1
events

, . . .}
MPI ReduceScatter with SUM array S
MPI ReduceScatter returns N total

events

, N total

bytes

N left

bytes

= N total

bytes

for msgNum < N total

events

do
MPI Recv(void*, MPI ANY, N left

bytes

)
N left

bytes

= N left

bytes

� msgSize
end for
Determine tlocal

min

MPI Allreduce(tglobal

min

, tlocal

min

)
t = tglobal

min

end while

Here we instead use a global synchronization algorithm.
While in some ways the simplest, it actually represents an
optimization on the event queue framework for workloads en-
countered with macroscale SST. The simulation begins at t = 0
with lookahead � determined from the network parameters. We
consider a simulation with N

lp

logical processes. Within the
time window (0, �) each LP will call MPI Isend to deliver
events to other LPs. At t = �, every LP performs two blocking
MPI collectives. First, they perform a reduce-scatter with a
sum function, illustrated in Figure ??. Each LP tracks the total
number of events and the total number of bytes sent to every
other LP. This array of size 2N

lp

is passed as input to the
reduce-scatter. Every LP receives as input from the reduce-

Solu%ons	
 to	
 the	
 problem	
 exist,	
 but	
 are	
 	

non-­‐trivial:	
 Why	
 rewrite	
 over	
 and	
 over?	

§  Conserva%ve	
 algorithm	
 with	
 event	
 queues:	
 Op%miza%on	
 to	
 limit	

communica%on	
 for	
 LP’s	
 that	
 are	
 “connected”	

§  Local,	
 point-­‐to-­‐point	
 communica%on	

§  More	
 difficult	
 to	
 implement	

12	

LP#2#
Queue# Event#B#

t=17#Lookahead##
δ=10#

tmin=17#tmax=27#

Event#C#
t=10#

Event#D#
T=21#

Local#queue#(LP#0)#

tlocal=7#
Local# Global#

tmax=18#

LP#1#
Queue# Event#A#

T=8#Tmin=8#Tmax=18#

Figure 3. Snapshot of events and timestamps for example conservative PDES
with LP queues

LP#2#
Queue#

Lookahead##
δ=10#

tmin=17#tmax=27#

Event#D#
T=21#

Local#queue#(LP#0)#

tlocal=17#
Local# Global#

tmax=27#

LP#1#
Queue# Event#E#

T=19#Tmin=19#Tmax=29#

Figure 4. Snapshot of events and timestamps for example conservative PDES
with LP queues

checkpointing, the entire application state is saved at regular
intervals, providing a fallback point. In reverse computation,
the entire state is not saved - only an event list is maintained.
When violations occur, the events must provide a “reverse”
mechanism to undo all state changes. Checkpointing induces
a significant overhead even if no time violations occur. Reverse
computation only induces overhead when violations occur. De-
tailed packet-level network simulations have been performed
at very large scales using reverse computation with the ROSS
simulator []. Both checkpointing and reverse computation
present special challenges for our desired simulation mode.
There is a large amount (several TB) of application state to
save when simulating 100K-1M network endpoints, causing
a very high storage and time overhead. Checkpoint strate-
gies may not be feasible. Reverse computation also presents
significant challenges since we want to allow arbitrary code
to be executed on real software stacks. If the simulation
proceeds through a simple and well-defined state machine,
programming reverse computation can be straightforward. A
packet sent that empties a queue, e.g. can be reinserted into
the queue. It is not obvious (or likely even possible) to define
reverse computation for arbitrary code. Thus, despite potential
for increased parallelism with optimistic PDES, we pursue a
conservative strategy here.

Conservative approaches generally operate through event

queues []. Each LP maintains an event queue for every LP
it might receive events from (Figures 3,4). Each event queue
has an associated time stamp indicating the last known virtual
time at the other LP. As an LP receives events on a queue,
the new events advance the timestamp In Figure 3, the local
process (LP 0) has synchronized and received events with the
timestamp t = 8 and t = 17 from the remote LPs 1 and 2.
Because the lookahead is � = 10, LP 0 is guaranteed that LP 1
will not deliver anything new with timestamp less than 18 and
LP 2 will not deliver anything with timestamp less than 27.
The local process can therefore safely run Event C at t = 10,
Event B at t = 17 and advance time until t = 18. The local
process now stalls and is unable to run Event D. In the next
synchronization, LP 0 receives Event E with time t = 19.
It has not received any new messages from LP 2, but it can
still advance its time window until t = 27 and can safely run
Event E and Event D. This scheme requires an LP to regularly
receive events on each queue. If no events are received, the
queue time is never updated and an LP will block waiting for
updates. If such a block occurs, an LP must send so-called
null messages to “request” a time update. Once a new time
update is received, the LP can advance its time window and
run more events.

This scheme can be highly efficient for certain workloads.
Even if there are 100 LPs, each LP might only communi-
cate with, e.g., 3 other neighbors. Only local point-to-point
communication is required to synchronize times rather than a
global communication. When many events are sent between
LPs (i.e null messages are not needed), it also provides some
degree of asynchrony as LPs do not explicitly block waiting on
each other. For our workloads, however, the above algorithm
becomes highly inefficient. In many network topologies and
models, each LP is connected to every other LP, erasing
the benefit of local communication. Furthermore, our simula-
tor emphasizes coarse-grained compute and network models.
Large time gaps often exist between consecutive events, often
much larger than the lookahead. This leads to a pathological
situation in which LPs are consumed sending null messages
back and forth.

while t < t
termination

do
Run all events until t+ �
Log event sends to S = {NLP0

events

, NLP0
bytes

, NLP1
events

, . . .}
MPI ReduceScatter with SUM array S
MPI ReduceScatter returns N total

events

, N total

bytes

N left

bytes

= N total

bytes

for msgNum < N total

events

do
MPI Recv(void*, MPI ANY, N left

bytes

)
N left

bytes

= N left

bytes

�msgSize
end for
Determine tlocal

min

MPI Allreduce(tglobal
min

, tlocal
min

)
t = tglobal

min

end while

Here we instead use a global synchronization algorithm.
While in some ways the simplest, it actually represents an
optimization on the event queue framework for workloads en-
countered with macroscale SST. The simulation begins at t = 0
with lookahead � determined from the network parameters. We
consider a simulation with N

lp

logical processes. Within the

What	
 makes	
 us	
 write	
 ad-­‐hoc	
 code	
 instead	
 of	

leverage	
 exis%ng	
 code?	
 	

§  Lack	
 of	
 standards	

§  Lack	
 of	
 documenta%on	

§  Huge	
 monolithic	
 code	
 bases	
 	

§  Compa%bility	
 across	
 platorms	

§  A	
 million	
 and	
 one	
 dependencies	

§  Physical	
 models	
 dependent	
 upon	
 simula%on	
 framework	

13	

Experiments we care about are model-driven –
simulator is a tool to get us what we really care about!

Virtual()me(

Time(window(

LP(0(

LP(1(

Scheduling(future(events(

Design	
 considera%ons	
 for	
 an	
 op%mal	
 	

high	
 fidelity	
 (cycle-­‐level)	
 simulator	
 	

§  Many	
 events	
 per	
 %me	
 window	

§  No	
 major	
 %me	
 gaps	
 (generally	
 always	
 have	
 events)	

§  Components	
 with	
 different	
 link	
 latencies	
 and	
 clocks	

§  Domain	
 specific	
 synchroniza%on	
 algorithms	

14	

Design	
 considera%ons	
 for	
 an	
 	

op%mal	
 coarse-­‐grained	
 structural	
 simulator	

§  May	
 have	
 a	
 few	
 events	
 per	
 %me	
 window	
 –	
 or	
 might	
 have	
 a	
 lot	

§  Can	
 have	
 large	
 gaps	
 	
 -­‐	
 %me	
 windows	
 with	
 no	
 events	
 in	
 them	

§  Huge	
 number	
 of	
 components,	
 but	
 with	
 the	
 same	
 link	
 latency	

15	

Router/
Switch

Router/
Switch

Node

NIC

Node

NIC

Abstract machine model with
congestion via buffers and queues

Design	
 considera%ons	
 for	
 an	
 	

op%mal	
 coarse-­‐grained	
 structural	
 simulator	

§  May	
 have	
 a	
 few	
 events	
 per	
 %me	
 window	
 –	
 or	
 might	
 have	
 a	
 lot	

§  Can	
 have	
 large	
 gaps	
 	
 -­‐	
 %me	
 windows	
 with	
 no	
 events	
 in	
 them	

§  Huge	
 number	
 of	
 components,	
 but	
 with	
 the	
 same	
 link	
 latency	

16	

Virtual()me(

Time(window(

LP(0(

LP(1(

Scheduling(future(events(

Compute call might take
5ms but link latencies in
the network are only
100ns!

MPI calls start
generating
network traffic

Design	
 considera%ons	
 for	
 an	
 	

op%mal	
 coarse-­‐grained	
 structural	
 simulator	

§  May	
 have	
 a	
 few	
 events	
 per	
 %me	
 window	
 –	
 or	
 might	
 have	
 a	
 lot	

§  Can	
 have	
 large	
 gaps	
 	
 -­‐	
 %me	
 windows	
 with	
 no	
 events	
 in	
 them	

§  Huge	
 number	
 of	
 components,	
 but	
 with	
 the	
 same	
 link	
 latency	

17	

Router/
Switch

Compute
Nodes

LP 0 LP 3

LP 1 LP 2

Design	
 considera%ons	
 for	
 a	
 simulator	
 	

based	
 on	
 analy%cal	
 models	

§  Only	
 a	
 few	
 events	
 per	
 %me	
 window	

§  Many	
 different	
 components,	
 but	
 all	
 connected	
 to	
 each	
 other	

18	

Compute
Node

Compute
Node

Compute
Node

Compute
Node

Compute
Node

Compute
Node

α = Latency
β = Inverse bandwidth

N =Message size

ΔT=α + β N

Unifying	
 elements	
 across	
 all	
 fideli%es	

§  Sending	
 network	
 messages	

§  Portability	
 layer	
 to	
 network	
 APIs	

§  Serializa%on	
 library	
 for	
 event	
 objects	

§  Local/global	
 virtual	
 %me	

§  Event	
 ordering	
 and	
 correctness	

§  Model	
 input	
 and	
 sta%s%cs	
 collec%on	

§  Par%%oning	
 components	
 across	

parallel	
 workers	

§  Mapping	
 of	
 LPs	
 to	
 physical	
 nodes	

§  Op%mize	
 par%%on	
 for	
 cheaper	

communica%on	

§  Managing/scheduling	
 events	

§  Map/calendar/heap	
 data	
 structures	

§  Cancel	
 events	

19	

Unifying	
 elements	
 across	
 all	
 fideli%es	

§  Sending	
 network	
 messages	

§  Portability	
 layer	
 to	
 network	
 APIs	

§  Serializa%on	
 library	
 for	
 event	
 objects	

§  Local/global	
 virtual	
 %me	

§  Event	
 ordering	
 and	
 correctness	

§  Model	
 input	
 and	
 sta%s%cs	
 collec%on	

§  Par%%oning	
 components	
 across	

parallel	
 workers	

§  Mapping	
 of	
 LPs	
 to	
 physical	
 nodes	

§  Op%mize	
 par%%on	
 for	
 cheaper	

communica%on	

§  Managing/scheduling	
 events	

§  Map/calendar/heap	
 data	
 structures	

§  Cancel	
 events	

20	

Unifying	
 elements	
 across	
 all	
 fideli%es	

§  Sending	
 network	
 messages	

§  Portability	
 layer	
 to	
 network	
 APIs	

§  Serializa%on	
 library	
 for	
 event	
 objects	

§  Local/global	
 virtual	
 %me	

§  Event	
 ordering	
 and	
 correctness	

§  Model	
 input	
 and	
 sta%s%cs	
 collec%on	

§  Par%%oning	
 components	
 across	

parallel	
 workers	

§  Mapping	
 of	
 LPs	
 to	
 physical	
 nodes	

§  Op%mize	
 par%%on	
 for	
 cheaper	

communica%on	

§  Managing/scheduling	
 events	

§  Map/calendar/heap	
 data	
 structures	

§  Cancel	
 events	

21	

Coarse-grained time

Cycle-level time

Unifying	
 elements	
 across	
 all	
 fideli%es	

§  Sending	
 network	
 messages	

§  Portability	
 layer	
 to	
 network	
 APIs	

§  Serializa%on	
 library	
 for	
 event	
 objects	

§  Local/global	
 virtual	
 %me	

§  Event	
 ordering	
 and	
 correctness	

§  Model	
 input	
 and	
 sta%s%cs	
 collec%on	

§  Par%%oning	
 components	
 across	

parallel	
 workers	

§  Mapping	
 of	
 LPs	
 to	
 physical	
 nodes	

§  Op%mize	
 par%%on	
 for	
 cheaper	

communica%on	

§  Managing/scheduling	
 events	

§  Map/calendar/heap	
 data	
 structures	

§  Cancel	
 events	

22	

Unifying	
 elements	
 across	
 all	
 fideli%es	

§  Sending	
 network	
 messages	

§  Portability	
 layer	
 to	
 network	
 APIs	

§  Serializa%on	
 library	
 for	
 event	
 objects	

§  Local/global	
 virtual	
 %me	

§  Event	
 ordering	
 and	
 correctness	

§  Model	
 input	
 and	
 sta%s%cs	
 collec%on	

§  Par%%oning	
 components	
 across	

parallel	
 workers	

§  Mapping	
 of	
 LPs	
 to	
 physical	
 nodes	

§  Op%mize	
 par%%on	
 for	
 cheaper	

communica%on	

§  Managing/scheduling	
 events	

§  Map/calendar/heap	
 data	
 structures	

§  Cancel	
 events	

23	

T=1,T=
2, T=3

T=7 T=17,
T=19

T=25 T=36

T=100

O(Log(N))
heap

O(1) calendar

Disunifying	
 elements	
 across	
 fideli%es:	
 	

par%%oning	
 strategy	
 and	
 parallel	
 algorithm	

§  Par%%oning	
 strategy	

§  Cycle-­‐level	
 has	
 heterogeneous	
 components	
 –	
 par%%oning	
 really	
 requires	

intelligent	
 graph	
 par%%oner	

§  Coarse-­‐grained	
 has	
 many	
 homogenous	
 components	
 –	
 par%%oning	
 s%ll	

requires	
 intelligent	
 par%%oner,	
 but	
 more	
 about	
 minimizing	
 graph	
 connec%vity	

than	
 best	
 link	
 latency	

§  Parallel	
 algorithm	

§  Global	
 assump%ons	
 on	
 interoperability	
 components	

§  Can	
 any	
 memory	
 subsystem	
 model	
 interact	
 with	
 any	
 processor	
 or	
 network	

model?	
 Or	
 are	
 event	
 messages	
 only	
 “self-­‐compa%ble”?	

24	

Polymorphic	
 components	
 can	
 be	
 tuned	

for	
 different	
 problems	

§  Components	
 don’t	
 need	
 to	
 be	
 aware	
 of	
 par%%oning	
 strategy	

§  Components	
 don’t	
 need	
 to	
 be	
 aware	
 of	
 parallel	
 algorithm	

25	

The Simulation framework consists of a i) Core and ii) interacting Components that form the
architecture simulation model. The core provides services common across models, such as

instantiating components, providing configuration information, partitioning models for parallel

execution, coordinating a common concept of time (e.g., in parallel execution), and transparently

handling parallel and local communication of events between model components. Model

components communicate through Links which deliver Events between components. Proper
temporal sequencing of component execution and event delivery is transparently handled by the

core. Thus architecture component models are easily re-­used and shared across system-­level

simulation models. Parallel execution is handled by partitioning the simulation model and

assigning components to physical cores in a target parallel machine.

A key principle of the design is that model components are oblivious to sequential or parallel

execution, and hence are transparently reusable in multiple simulation scenarios. For example,

when events are communicated between components over a link, the component is unaware

whether the destination component is local or remote. Delivery is handled by the core including

any serialization necessary for remote communication in the event that the destination core is

remotely located.

The simulation model as a whole is specified via a system description that specifies

components, their interconnection, and their configuration including component-­level and

system-­level parameters. The latter are used in transparently partitioning the model for parallel

execution. Our current efforts are focused on two main aspects of the preceding framework -­ i)

the core API, and ii) the component API. These efforts have been influenced by several ongoing

projects notably SST, GEM5, and Manifold. Preliminary efforts at migrating models between SST

and Manifold supports the anticipated benefits of the common API.

A Call To Arms
Our position is that this API is critical for the architecture community, but requires broad support

to be successful. We ask for community input and collaboration on this ongoing design project.

Please join in this effort by signing up to our mailing list ______ and visiting our design wiki

______.

Challenge	
 problem:	
 mixing	
 fideli%es	

26	

LP	
 with	
 heavy-­‐weight	
 node	
 opera%ng	
 on	
 different	
 %me	
 scales,	
 but	
 look	

ahead	
 determined	
 by	
 coarse-­‐grained	
 links!	

Router/
Switch

Compute
Nodes

Challenge	
 problem:	
 mixing	
 fideli%es	

27	

Router/
Switch

Compute
Nodes

Par%%on	
 creates	
 op%mal	

lookahead	
 on	
 high	
 latency	
 links	

Challenge	
 problem:	
 mixing	
 fideli%es	

28	

Router/
Switch

Compute
Nodes Good partitioning balances

number of events per LP

Challenge	
 problem:	
 mixing	
 fideli%es	

29	

Router/
Switch

Compute
Nodes

Simulator core
problem, not a
domain-specific
problem

Challenge	
 problem:	
 histogram	
 of	
 	

message	
 delays	
 in	
 PDES	
 run	

§  Tag	
 packet	
 going	
 out,	
 going	
 in	
 with	
 %me	

§  Add	
 single	
 field	
 to	
 exis%ng	
 network	
 message	
 object	

§  No%on	
 of	
 global	
 %me	

§  Histogram	
 object	
 that	
 reduces/collects	
 data	

§  hist-­‐>add_one(delay)	

§  Object	
 must	
 output	
 usable	
 data	
 format/figure	
 at	
 end	
 of	
 simula%on	

§  Data	
 must	
 be	
 reduced	
 across	
 LPs	

30	

Minimal routing Adaptive routing

Challenge	
 problem:	
 histogram	
 of	
 	

message	
 delays	
 in	
 PDES	
 run	

Majority	
 of	
 work	
 should	
 already	
 be	
 	

done	
 for	
 us	
 in	
 common	
 core!	

31	

Minimal routing Adaptive routing

MODSIM	
 is	
 Camp	
 David,	
 not	
 Sinai	

32	

Structural simulation toolkit at Sandia (SST) is a jumping
off point for discussing universal simulation standards,
not C++ framework written on stone tablets!

MODSIM	
 is	
 Camp	
 David,	
 not	
 Sinai	

33	

We think our PDES core is mature and lightweight
enough to make your life easer – enable you to use your
own code, not force you to use ours!

Range	
 of	
 simula%on:	
 success	
 stories	
 so	
 far	

34	

Coarse grain
+ analytic

Coarse grain Cycle Level Mixed
fidelity

The Simulation framework consists of a i) Core and ii) interacting Components that form the
architecture simulation model. The core provides services common across models, such as

instantiating components, providing configuration information, partitioning models for parallel

execution, coordinating a common concept of time (e.g., in parallel execution), and transparently

handling parallel and local communication of events between model components. Model

components communicate through Links which deliver Events between components. Proper
temporal sequencing of component execution and event delivery is transparently handled by the

core. Thus architecture component models are easily re-­used and shared across system-­level

simulation models. Parallel execution is handled by partitioning the simulation model and

assigning components to physical cores in a target parallel machine.

A key principle of the design is that model components are oblivious to sequential or parallel

execution, and hence are transparently reusable in multiple simulation scenarios. For example,

when events are communicated between components over a link, the component is unaware

whether the destination component is local or remote. Delivery is handled by the core including

any serialization necessary for remote communication in the event that the destination core is

remotely located.

The simulation model as a whole is specified via a system description that specifies

components, their interconnection, and their configuration including component-­level and

system-­level parameters. The latter are used in transparently partitioning the model for parallel

execution. Our current efforts are focused on two main aspects of the preceding framework -­ i)

the core API, and ii) the component API. These efforts have been influenced by several ongoing

projects notably SST, GEM5, and Manifold. Preliminary efforts at migrating models between SST

and Manifold supports the anticipated benefits of the common API.

A Call To Arms
Our position is that this API is critical for the architecture community, but requires broad support

to be successful. We ask for community input and collaboration on this ongoing design project.

Please join in this effort by signing up to our mailing list ______ and visiting our design wiki

______.

+Eiger	

Logic

clk

clk
cond

input

clk

Common Core

+GEM5	

MODSIM	
 Summary	

§  Gaps:	
 	

§  Lack	
 of	
 standards,	
 lack	
 of	
 code	
 reuse	

§  Bigger	
 picture	
 and	
 poten%al	
 collaborators:	
 	

§  Everyone?	
 Anyone	
 who	
 wants	
 to	
 scale	
 experiments	
 through	
 PDES	
 or	
 wants	
 to	

compose	
 models	
 mixing	
 different	
 fidelity/physics	

§  What	
 would	
 make	
 it	
 easier	
 to	
 leverage	
 results	
 from	
 other	
 groups?	

§  If	
 you	
 find	
 yourself	
 wri%ng	
 a	
 PDES	
 core,	
 who	
 you	
 gonna	
 call…	
 	

§  Development/adop5on	
 of	
 standards	
 will	
 be	
 driven	
 by	

collabora5on	
 and	
 refined	
 through	
 use	
 cases	

35	

