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We	  need	  models	  of	  varying	  fidelity	  
How	  many	  tools	  do	  we	  need	  for	  all	  of	  them?	  
§  High	  fidelity	  

§  What	  you	  care	  about	  only	  at	  exists	  at	  cycle-‐
accurate	  detail	  	  
§  Cache	  reuse	  policies	  in	  memory	  
§  Flit-‐level	  flow	  control	  

§  Valida%on	  of	  lower	  fidelity	  models	  

§  Medium	  fidelity	  
§  Coarse-‐grained	  modeling	  of	  architecture	  at	  

system	  scale	  
§  Adap%ve	  rou%ng	  without	  flit	  detail	  
§  Scaling	  of	  collec%ves	  with	  network	  conges%on	  

§  Valida%on	  of	  cons%tu%ve	  models	  at	  scale	  

§  Cons%tu%ve	  models	  
§  Poten%ally	  good	  accuracy	  with	  right	  fiXng	  
§  Rapid	  parameter	  space	  explora%on	  
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SST 
Structural Simulation Toolkit 



We	  need	  models	  of	  varying	  fidelity	  
How	  many	  tools	  do	  we	  need	  for	  all	  of	  them?	  
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SST 
Sonic Screwdriver Toolchain 



How	  do	  we	  defeat	  the	  Daleks?	  

§  Common	  Core	  
§  Scale	  up	  performance	  =	  scale	  up	  

performance	  simula%on	  =	  parallel	  
simula%on	  (PDES)	  

§  Composability	  
§  Define	  standards	  for	  composing	  models	  

that	  speak	  same	  language	  and	  share	  the	  
same	  no%on	  of	  %me	  	  

§  Community	  
§  Concerted	  effort	  to	  define	  standards	  and	  

reuse	  code	  
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What	  is	  the	  major	  source	  of	  suffering	  in	  
parallel	  discrete	  event	  simula%on	  (PDES)?	  

§  Scale	  up	  machines	  =	  scale	  up	  simula%ons	  of	  machines	  =	  PDES	  
§  Need	  event	  management	  and	  scheduling	  

§  Avoid	  %me-‐order	  viola%ons!	  

7	  

Dependencies 
between events 



What	  is	  the	  major	  source	  of	  suffering	  in	  
parallel	  discrete	  event	  simula%on?	  
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Violation!!! 



What	  is	  the	  major	  source	  of	  suffering	  in	  
parallel	  discrete	  event	  simula%on?	  
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True	  for	  all	  models	  
and	  fideli0es!	  
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What	  is	  the	  major	  source	  of	  suffering	  in	  
parallel	  discrete	  event	  simula%on?	  
§  Parallelism	  possible	  mainly	  from	  lookahead	  (safe	  %me	  window)	  

based	  on	  virtual	  latency	  between	  components	  
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Solu%ons	  to	  the	  problem	  exist,	  but	  are	  	  
non-‐trivial:	  Why	  rewrite	  over	  and	  over?	  
§  “Naïve”	  conserva%ve	  %me-‐stepping	  algorithm	  

§  Global,	  collec%ve	  communica%on	  
§  Communica%on	  op%miza%ons	  to	  lower	  prefactor,	  but	  has	  scalability	  limits	  
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checkpointing, the entire application state is saved at regular
intervals, providing a fallback point. In reverse computation,
the entire state is not saved - only an event list is maintained.
When violations occur, the events must provide a “reverse”
mechanism to undo all state changes. Checkpointing induces
a significant overhead even if no time violations occur. Reverse
computation only induces overhead when violations occur. De-
tailed packet-level network simulations have been performed
at very large scales using reverse computation with the ROSS
simulator []. Both checkpointing and reverse computation
present special challenges for our desired simulation mode.
There is a large amount (several TB) of application state to
save when simulating 100K-1M network endpoints, causing
a very high storage and time overhead. Checkpoint strate-
gies may not be feasible. Reverse computation also presents
significant challenges since we want to allow arbitrary code
to be executed on real software stacks. If the simulation
proceeds through a simple and well-defined state machine,
programming reverse computation can be straightforward. A
packet sent that empties a queue, e.g. can be reinserted into
the queue. It is not obvious (or likely even possible) to define
reverse computation for arbitrary code. Thus, despite potential
for increased parallelism with optimistic PDES, we pursue a
conservative strategy here.

Conservative approaches generally operate through event

queues []. Each LP maintains an event queue for every LP
it might receive events from (Figures 3,4). Each event queue
has an associated time stamp indicating the last known virtual
time at the other LP. As an LP receives events on a queue,
the new events advance the timestamp In Figure 3, the local
process (LP 0) has synchronized and received events with the
timestamp t = 8 and t = 17 from the remote LPs 1 and 2.
Because the lookahead is � = 10, LP 0 is guaranteed that LP 1
will not deliver anything new with timestamp less than 18 and
LP 2 will not deliver anything with timestamp less than 27.
The local process can therefore safely run Event C at t = 10,
Event B at t = 17 and advance time until t = 18. The local
process now stalls and is unable to run Event D. In the next
synchronization, LP 0 receives Event E with time t = 19.
It has not received any new messages from LP 2, but it can
still advance its time window until t = 27 and can safely run
Event E and Event D. This scheme requires an LP to regularly
receive events on each queue. If no events are received, the
queue time is never updated and an LP will block waiting for
updates. If such a block occurs, an LP must send so-called
null messages to “request” a time update. Once a new time
update is received, the LP can advance its time window and
run more events.

This scheme can be highly efficient for certain workloads.
Even if there are 100 LPs, each LP might only communi-
cate with, e.g., 3 other neighbors. Only local point-to-point
communication is required to synchronize times rather than a
global communication. When many events are sent between
LPs (i.e null messages are not needed), it also provides some
degree of asynchrony as LPs do not explicitly block waiting on
each other. For our workloads, however, the above algorithm
becomes highly inefficient. In many network topologies and
models, each LP is connected to every other LP, erasing
the benefit of local communication. Furthermore, our simula-
tor emphasizes coarse-grained compute and network models.
Large time gaps often exist between consecutive events, often
much larger than the lookahead. This leads to a pathological
situation in which LPs are consumed sending null messages
back and forth.
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Here we instead use a global synchronization algorithm.
While in some ways the simplest, it actually represents an
optimization on the event queue framework for workloads en-
countered with macroscale SST. The simulation begins at t = 0
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consider a simulation with N
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checkpointing, the entire application state is saved at regular
intervals, providing a fallback point. In reverse computation,
the entire state is not saved - only an event list is maintained.
When violations occur, the events must provide a “reverse”
mechanism to undo all state changes. Checkpointing induces
a significant overhead even if no time violations occur. Reverse
computation only induces overhead when violations occur. De-
tailed packet-level network simulations have been performed
at very large scales using reverse computation with the ROSS
simulator []. Both checkpointing and reverse computation
present special challenges for our desired simulation mode.
There is a large amount (several TB) of application state to
save when simulating 100K-1M network endpoints, causing
a very high storage and time overhead. Checkpoint strate-
gies may not be feasible. Reverse computation also presents
significant challenges since we want to allow arbitrary code
to be executed on real software stacks. If the simulation
proceeds through a simple and well-defined state machine,
programming reverse computation can be straightforward. A
packet sent that empties a queue, e.g. can be reinserted into
the queue. It is not obvious (or likely even possible) to define
reverse computation for arbitrary code. Thus, despite potential
for increased parallelism with optimistic PDES, we pursue a
conservative strategy here.

Conservative approaches generally operate through event

queues []. Each LP maintains an event queue for every LP
it might receive events from (Figures 3,4). Each event queue
has an associated time stamp indicating the last known virtual
time at the other LP. As an LP receives events on a queue,
the new events advance the timestamp In Figure 3, the local
process (LP 0) has synchronized and received events with the
timestamp t = 8 and t = 17 from the remote LPs 1 and 2.
Because the lookahead is � = 10, LP 0 is guaranteed that LP 1
will not deliver anything new with timestamp less than 18 and
LP 2 will not deliver anything with timestamp less than 27.
The local process can therefore safely run Event C at t = 10,
Event B at t = 17 and advance time until t = 18. The local
process now stalls and is unable to run Event D. In the next
synchronization, LP 0 receives Event E with time t = 19.
It has not received any new messages from LP 2, but it can
still advance its time window until t = 27 and can safely run
Event E and Event D. This scheme requires an LP to regularly
receive events on each queue. If no events are received, the
queue time is never updated and an LP will block waiting for
updates. If such a block occurs, an LP must send so-called
null messages to “request” a time update. Once a new time
update is received, the LP can advance its time window and
run more events.

This scheme can be highly efficient for certain workloads.
Even if there are 100 LPs, each LP might only communi-
cate with, e.g., 3 other neighbors. Only local point-to-point
communication is required to synchronize times rather than a
global communication. When many events are sent between
LPs (i.e null messages are not needed), it also provides some
degree of asynchrony as LPs do not explicitly block waiting on
each other. For our workloads, however, the above algorithm
becomes highly inefficient. In many network topologies and
models, each LP is connected to every other LP, erasing
the benefit of local communication. Furthermore, our simula-
tor emphasizes coarse-grained compute and network models.
Large time gaps often exist between consecutive events, often
much larger than the lookahead. This leads to a pathological
situation in which LPs are consumed sending null messages
back and forth.
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induces overhead when violations occur. Detailed packet-level
network simulations have been performed at very large scales
using reverse computation with the ROSS simulator [?], [?].
Both checkpointing and reverse computation present special
challenges for our desired simulation mode. There is a large
amount (several TB) of application state to save when simulat-
ing 100K-1M network endpoints, causing a very high storage
and time overhead. Checkpoint strategies may not be feasible.
Reverse computation also presents significant challenges since
we want to allow arbitrary code to be executed on real software
stacks. If the simulation proceeds through a simple and well-
defined state machine, programming reverse computation can
be straightforward. A packet sent that empties a queue, e.g.
can be placed back into its original position in the queue to
reverse the event. It is not obvious (or likely even possible)
to define reverse computation for arbitrary code. Thus, despite
potential for increased parallelism with optimistic PDES, we
pursue a conservative strategy here.

Conservative approaches generally operate through event
queues [?], [?]. Each LP maintains an event queue for every
LP it might receive events from (Figures ??,??). Each event
queue has an associated time stamp indicating the last known
virtual time at the other LP. As an LP receives events on a
queue, the new events advance the timestamp. In Figure ??,
the local process (LP 0) has synchronized and received events
with the timestamp t = 8 and t = 17 from the remote LPs 1

and 2. Because the lookahead is � = 10, LP 0 is guaranteed
that LP 1 will not deliver anything new with timestamp less
than 18 and LP 2 will not deliver anything with timestamp less
than 27. The local process can therefore safely run event C at
t = 10, event B at t = 17 and advance time until t = 18. The
local process now stalls and is unable to run event D. In the
next synchronization, LP 0 receives event E with time t = 19.
It has not received any new messages from LP 2, but it can
still advance its time window until t = 27 and can safely run
event E and event D. This scheme requires an LP to regularly
receive events on each queue. If no events are received, the
queue time is never updated and an LP will block waiting for
updates. If such a block occurs, an LP must send so-called null
messages to “request” a time update (although methods have
avoiding null messages have been proposed [?]). Once a new
time update is received, the LP can advance its time window
and run more events.

This scheme can be highly efficient for certain workloads.
Even if there are 100 LPs, each LP might only communicate
with, e.g., 3 other neighbors. Only local point-to-point commu-
nication is required to synchronize times rather than a global
communication. When many events are sent between LPs (i.e
null messages not needed), it also provides some asynchrony
as LPs do not explicitly block waiting on each other.

For our workloads, however, the above algorithm becomes
highly inefficient. In many network topologies and models,
each LP is connected to every other LP, erasing the benefit of
local communication. Furthermore, our simulator emphasizes
coarse-grained compute and network models. Large time gaps
often exist between consecutive events, often much larger than
the lookahead. This leads to a pathological situation in which
LPs are consumed sending null messages back and forth.

while t < t
termination

do
Run all events until t + �
Log event sends to S = {NLP0

events

, NLP0
bytes

, NLP1
events

, . . .}
MPI ReduceScatter with SUM array S
MPI ReduceScatter returns N total

events

, N total

bytes

N left

bytes

= N total

bytes

for msgNum < N total

events

do
MPI Recv(void*, MPI ANY, N left

bytes

)
N left

bytes

= N left

bytes

� msgSize
end for
Determine tlocal

min

MPI Allreduce(tglobal

min

, tlocal

min

)
t = tglobal

min

end while

Here we instead use a global synchronization algorithm.
While in some ways the simplest, it actually represents an
optimization on the event queue framework for workloads en-
countered with macroscale SST. The simulation begins at t = 0
with lookahead � determined from the network parameters. We
consider a simulation with N

lp

logical processes. Within the
time window (0, �) each LP will call MPI Isend to deliver
events to other LPs. At t = �, every LP performs two blocking
MPI collectives. First, they perform a reduce-scatter with a
sum function, illustrated in Figure ??. Each LP tracks the total
number of events and the total number of bytes sent to every
other LP. This array of size 2N

lp

is passed as input to the
reduce-scatter. Every LP receives as input from the reduce-



Solu%ons	  to	  the	  problem	  exist,	  but	  are	  	  
non-‐trivial:	  Why	  rewrite	  over	  and	  over?	  
§  Conserva%ve	  algorithm	  with	  event	  queues:	  Op%miza%on	  to	  limit	  

communica%on	  for	  LP’s	  that	  are	  “connected”	  
§  Local,	  point-‐to-‐point	  communica%on	  
§  More	  difficult	  to	  implement	  
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checkpointing, the entire application state is saved at regular
intervals, providing a fallback point. In reverse computation,
the entire state is not saved - only an event list is maintained.
When violations occur, the events must provide a “reverse”
mechanism to undo all state changes. Checkpointing induces
a significant overhead even if no time violations occur. Reverse
computation only induces overhead when violations occur. De-
tailed packet-level network simulations have been performed
at very large scales using reverse computation with the ROSS
simulator []. Both checkpointing and reverse computation
present special challenges for our desired simulation mode.
There is a large amount (several TB) of application state to
save when simulating 100K-1M network endpoints, causing
a very high storage and time overhead. Checkpoint strate-
gies may not be feasible. Reverse computation also presents
significant challenges since we want to allow arbitrary code
to be executed on real software stacks. If the simulation
proceeds through a simple and well-defined state machine,
programming reverse computation can be straightforward. A
packet sent that empties a queue, e.g. can be reinserted into
the queue. It is not obvious (or likely even possible) to define
reverse computation for arbitrary code. Thus, despite potential
for increased parallelism with optimistic PDES, we pursue a
conservative strategy here.

Conservative approaches generally operate through event

queues []. Each LP maintains an event queue for every LP
it might receive events from (Figures 3,4). Each event queue
has an associated time stamp indicating the last known virtual
time at the other LP. As an LP receives events on a queue,
the new events advance the timestamp In Figure 3, the local
process (LP 0) has synchronized and received events with the
timestamp t = 8 and t = 17 from the remote LPs 1 and 2.
Because the lookahead is � = 10, LP 0 is guaranteed that LP 1
will not deliver anything new with timestamp less than 18 and
LP 2 will not deliver anything with timestamp less than 27.
The local process can therefore safely run Event C at t = 10,
Event B at t = 17 and advance time until t = 18. The local
process now stalls and is unable to run Event D. In the next
synchronization, LP 0 receives Event E with time t = 19.
It has not received any new messages from LP 2, but it can
still advance its time window until t = 27 and can safely run
Event E and Event D. This scheme requires an LP to regularly
receive events on each queue. If no events are received, the
queue time is never updated and an LP will block waiting for
updates. If such a block occurs, an LP must send so-called
null messages to “request” a time update. Once a new time
update is received, the LP can advance its time window and
run more events.

This scheme can be highly efficient for certain workloads.
Even if there are 100 LPs, each LP might only communi-
cate with, e.g., 3 other neighbors. Only local point-to-point
communication is required to synchronize times rather than a
global communication. When many events are sent between
LPs (i.e null messages are not needed), it also provides some
degree of asynchrony as LPs do not explicitly block waiting on
each other. For our workloads, however, the above algorithm
becomes highly inefficient. In many network topologies and
models, each LP is connected to every other LP, erasing
the benefit of local communication. Furthermore, our simula-
tor emphasizes coarse-grained compute and network models.
Large time gaps often exist between consecutive events, often
much larger than the lookahead. This leads to a pathological
situation in which LPs are consumed sending null messages
back and forth.
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Here we instead use a global synchronization algorithm.
While in some ways the simplest, it actually represents an
optimization on the event queue framework for workloads en-
countered with macroscale SST. The simulation begins at t = 0
with lookahead � determined from the network parameters. We
consider a simulation with N

lp

logical processes. Within the



What	  makes	  us	  write	  ad-‐hoc	  code	  instead	  of	  
leverage	  exis%ng	  code?	  	  
§  Lack	  of	  standards	  
§  Lack	  of	  documenta%on	  
§  Huge	  monolithic	  code	  bases	  	  
§  Compa%bility	  across	  platorms	  
§  A	  million	  and	  one	  dependencies	  
§  Physical	  models	  dependent	  upon	  simula%on	  framework	  
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Experiments we care about are model-driven – 
simulator is a tool to get us what we really care about! 



Virtual()me(
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Design	  considera%ons	  for	  an	  op%mal	  	  
high	  fidelity	  (cycle-‐level)	  simulator	  	  
§  Many	  events	  per	  %me	  window	  
§  No	  major	  %me	  gaps	  (generally	  always	  have	  events)	  
§  Components	  with	  different	  link	  latencies	  and	  clocks	  
§  Domain	  specific	  synchroniza%on	  algorithms	  
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Design	  considera%ons	  for	  an	  	  
op%mal	  coarse-‐grained	  structural	  simulator	  
§  May	  have	  a	  few	  events	  per	  %me	  window	  –	  or	  might	  have	  a	  lot	  
§  Can	  have	  large	  gaps	  	  -‐	  %me	  windows	  with	  no	  events	  in	  them	  
§  Huge	  number	  of	  components,	  but	  with	  the	  same	  link	  latency	  
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Design	  considera%ons	  for	  an	  	  
op%mal	  coarse-‐grained	  structural	  simulator	  
§  May	  have	  a	  few	  events	  per	  %me	  window	  –	  or	  might	  have	  a	  lot	  
§  Can	  have	  large	  gaps	  	  -‐	  %me	  windows	  with	  no	  events	  in	  them	  
§  Huge	  number	  of	  components,	  but	  with	  the	  same	  link	  latency	  

16	  

Virtual()me(

Time(window(

LP(0(

LP(1(

Scheduling(future(events(

Compute call might take 
5ms but link latencies in 
the network are only 
100ns! 

MPI calls start 
generating 
network traffic 



Design	  considera%ons	  for	  an	  	  
op%mal	  coarse-‐grained	  structural	  simulator	  
§  May	  have	  a	  few	  events	  per	  %me	  window	  –	  or	  might	  have	  a	  lot	  
§  Can	  have	  large	  gaps	  	  -‐	  %me	  windows	  with	  no	  events	  in	  them	  
§  Huge	  number	  of	  components,	  but	  with	  the	  same	  link	  latency	  
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Design	  considera%ons	  for	  a	  simulator	  	  
based	  on	  analy%cal	  models	  
§  Only	  a	  few	  events	  per	  %me	  window	  
§  Many	  different	  components,	  but	  all	  connected	  to	  each	  other	  
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Unifying	  elements	  across	  all	  fideli%es	  

§  Sending	  network	  messages	  
§  Portability	  layer	  to	  network	  APIs	  
§  Serializa%on	  library	  for	  event	  objects	  

§  Local/global	  virtual	  %me	  
§  Event	  ordering	  and	  correctness	  
§  Model	  input	  and	  sta%s%cs	  collec%on	  

§  Par%%oning	  components	  across	  
parallel	  workers	  
§  Mapping	  of	  LPs	  to	  physical	  nodes	  
§  Op%mize	  par%%on	  for	  cheaper	  

communica%on	  

§  Managing/scheduling	  events	  
§  Map/calendar/heap	  data	  structures	  
§  Cancel	  events	  
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Unifying	  elements	  across	  all	  fideli%es	  
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Disunifying	  elements	  across	  fideli%es:	  	  
par%%oning	  strategy	  and	  parallel	  algorithm	  
§  Par%%oning	  strategy	  

§  Cycle-‐level	  has	  heterogeneous	  components	  –	  par%%oning	  really	  requires	  
intelligent	  graph	  par%%oner	  

§  Coarse-‐grained	  has	  many	  homogenous	  components	  –	  par%%oning	  s%ll	  
requires	  intelligent	  par%%oner,	  but	  more	  about	  minimizing	  graph	  connec%vity	  
than	  best	  link	  latency	  

§  Parallel	  algorithm	  
§  Global	  assump%ons	  on	  interoperability	  components	  

§  Can	  any	  memory	  subsystem	  model	  interact	  with	  any	  processor	  or	  network	  
model?	  Or	  are	  event	  messages	  only	  “self-‐compa%ble”?	  
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Polymorphic	  components	  can	  be	  tuned	  
for	  different	  problems	  
§  Components	  don’t	  need	  to	  be	  aware	  of	  par%%oning	  strategy	  
§  Components	  don’t	  need	  to	  be	  aware	  of	  parallel	  algorithm	  
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The  Simulation  framework  consists  of  a  i)  Core  and  ii)  interacting  Components  that  form  the  
architecture  simulation  model.  The  core  provides  services  common  across  models,  such  as  

instantiating  components,  providing  configuration  information,  partitioning  models  for  parallel  

execution,  coordinating  a  common  concept  of  time  (e.g.,  in  parallel  execution),  and  transparently  

handling  parallel  and  local  communication  of  events  between  model  components.  Model  

components  communicate  through  Links  which  deliver  Events  between  components.  Proper  
temporal  sequencing  of  component  execution  and  event  delivery  is  transparently  handled  by    the  

core.  Thus  architecture  component  models  are  easily  re-used  and  shared  across  system-level  

simulation  models.  Parallel  execution  is  handled  by  partitioning  the  simulation  model  and  

assigning  components  to  physical  cores  in  a  target  parallel  machine.    

A  key  principle  of  the  design  is  that  model  components  are  oblivious  to  sequential  or  parallel  

execution,  and  hence  are  transparently  reusable  in  multiple  simulation  scenarios.  For  example,  

when  events  are  communicated  between  components  over  a  link,  the  component  is  unaware  

whether  the  destination  component  is  local  or  remote.  Delivery  is  handled  by  the  core  including  

any  serialization  necessary  for  remote  communication  in  the  event  that  the  destination  core  is  

remotely  located.  

The  simulation  model  as  a  whole  is  specified  via  a  system  description  that  specifies  

components,  their  interconnection,  and  their  configuration  including  component-level  and  

system-level  parameters.  The  latter  are  used  in  transparently  partitioning  the  model  for  parallel  

execution.  Our  current  efforts  are  focused  on  two  main  aspects  of  the  preceding  framework  -  i)  

the  core  API,  and  ii)  the  component  API.  These  efforts  have  been  influenced  by  several  ongoing  

projects  notably  SST,  GEM5,  and  Manifold.  Preliminary  efforts  at  migrating  models  between  SST  

and  Manifold  supports  the  anticipated  benefits  of  the  common  API.    

A  Call  To  Arms  
Our  position  is  that  this  API  is  critical  for  the  architecture  community,  but  requires  broad  support  

to  be  successful.  We  ask  for  community  input  and  collaboration  on  this  ongoing  design  project.  

Please  join  in  this  effort  by  signing  up  to  our  mailing  list  ______  and  visiting  our  design  wiki  

______.  

  



Challenge	  problem:	  mixing	  fideli%es	  
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LP	  with	  heavy-‐weight	  node	  opera%ng	  on	  different	  %me	  scales,	  but	  look	  
ahead	  determined	  by	  coarse-‐grained	  links!	  
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Challenge	  problem:	  mixing	  fideli%es	  
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Par%%on	  creates	  op%mal	  
lookahead	  on	  high	  latency	  links	  



Challenge	  problem:	  mixing	  fideli%es	  
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Challenge	  problem:	  mixing	  fideli%es	  
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Challenge	  problem:	  histogram	  of	  	  
message	  delays	  in	  PDES	  run	  
§  Tag	  packet	  going	  out,	  going	  in	  with	  %me	  

§  Add	  single	  field	  to	  exis%ng	  network	  message	  object	  
§  No%on	  of	  global	  %me	  

§  Histogram	  object	  that	  reduces/collects	  data	  
§  hist-‐>add_one(delay)	  
§  Object	  must	  output	  usable	  data	  format/figure	  at	  end	  of	  simula%on	  
§  Data	  must	  be	  reduced	  across	  LPs	  
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Minimal routing Adaptive routing 



Challenge	  problem:	  histogram	  of	  	  
message	  delays	  in	  PDES	  run	  

Majority	  of	  work	  should	  already	  be	  	  
done	  for	  us	  in	  common	  core!	  
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Minimal routing Adaptive routing 



MODSIM	  is	  Camp	  David,	  not	  Sinai	  
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Structural simulation toolkit at Sandia (SST) is a jumping 
off point for discussing universal simulation standards, 
not C++ framework written on stone tablets! 



MODSIM	  is	  Camp	  David,	  not	  Sinai	  
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We think our PDES core is mature and lightweight 
enough to make your life easer – enable you to use your 
own code, not force you to use ours! 



Range	  of	  simula%on:	  success	  stories	  so	  far	  
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The  Simulation  framework  consists  of  a  i)  Core  and  ii)  interacting  Components  that  form  the  
architecture  simulation  model.  The  core  provides  services  common  across  models,  such  as  
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MODSIM	  Summary	  

§  Gaps:	  	  
§  Lack	  of	  standards,	  lack	  of	  code	  reuse	  

§  Bigger	  picture	  and	  poten%al	  collaborators:	  	  
§  Everyone?	  Anyone	  who	  wants	  to	  scale	  experiments	  through	  PDES	  or	  wants	  to	  

compose	  models	  mixing	  different	  fidelity/physics	  

§  What	  would	  make	  it	  easier	  to	  leverage	  results	  from	  other	  groups?	  
§  If	  you	  find	  yourself	  wri%ng	  a	  PDES	  core,	  who	  you	  gonna	  call…	  	  

§  Development/adop5on	  of	  standards	  will	  be	  driven	  by	  
collabora5on	  and	  refined	  through	  use	  cases	  
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