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We	
  need	
  models	
  of	
  varying	
  fidelity	
  
How	
  many	
  tools	
  do	
  we	
  need	
  for	
  all	
  of	
  them?	
  
§  High	
  fidelity	
  

§  What	
  you	
  care	
  about	
  only	
  at	
  exists	
  at	
  cycle-­‐
accurate	
  detail	
  	
  
§  Cache	
  reuse	
  policies	
  in	
  memory	
  
§  Flit-­‐level	
  flow	
  control	
  

§  Valida%on	
  of	
  lower	
  fidelity	
  models	
  

§  Medium	
  fidelity	
  
§  Coarse-­‐grained	
  modeling	
  of	
  architecture	
  at	
  

system	
  scale	
  
§  Adap%ve	
  rou%ng	
  without	
  flit	
  detail	
  
§  Scaling	
  of	
  collec%ves	
  with	
  network	
  conges%on	
  

§  Valida%on	
  of	
  cons%tu%ve	
  models	
  at	
  scale	
  

§  Cons%tu%ve	
  models	
  
§  Poten%ally	
  good	
  accuracy	
  with	
  right	
  fiXng	
  
§  Rapid	
  parameter	
  space	
  explora%on	
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Sonic Screwdriver Toolchain 



How	
  do	
  we	
  defeat	
  the	
  Daleks?	
  

§  Common	
  Core	
  
§  Scale	
  up	
  performance	
  =	
  scale	
  up	
  

performance	
  simula%on	
  =	
  parallel	
  
simula%on	
  (PDES)	
  

§  Composability	
  
§  Define	
  standards	
  for	
  composing	
  models	
  

that	
  speak	
  same	
  language	
  and	
  share	
  the	
  
same	
  no%on	
  of	
  %me	
  	
  

§  Community	
  
§  Concerted	
  effort	
  to	
  define	
  standards	
  and	
  

reuse	
  code	
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What	
  is	
  the	
  major	
  source	
  of	
  suffering	
  in	
  
parallel	
  discrete	
  event	
  simula%on	
  (PDES)?	
  

§  Scale	
  up	
  machines	
  =	
  scale	
  up	
  simula%ons	
  of	
  machines	
  =	
  PDES	
  
§  Need	
  event	
  management	
  and	
  scheduling	
  

§  Avoid	
  %me-­‐order	
  viola%ons!	
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True	
  for	
  all	
  models	
  
and	
  fideli0es!	
  



Virtual()me(

Time(window(

LP(0(

LP(1(

Scheduling(future(events(

What	
  is	
  the	
  major	
  source	
  of	
  suffering	
  in	
  
parallel	
  discrete	
  event	
  simula%on?	
  
§  Parallelism	
  possible	
  mainly	
  from	
  lookahead	
  (safe	
  %me	
  window)	
  

based	
  on	
  virtual	
  latency	
  between	
  components	
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Solu%ons	
  to	
  the	
  problem	
  exist,	
  but	
  are	
  	
  
non-­‐trivial:	
  Why	
  rewrite	
  over	
  and	
  over?	
  
§  “Naïve”	
  conserva%ve	
  %me-­‐stepping	
  algorithm	
  

§  Global,	
  collec%ve	
  communica%on	
  
§  Communica%on	
  op%miza%ons	
  to	
  lower	
  prefactor,	
  but	
  has	
  scalability	
  limits	
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checkpointing, the entire application state is saved at regular
intervals, providing a fallback point. In reverse computation,
the entire state is not saved - only an event list is maintained.
When violations occur, the events must provide a “reverse”
mechanism to undo all state changes. Checkpointing induces
a significant overhead even if no time violations occur. Reverse
computation only induces overhead when violations occur. De-
tailed packet-level network simulations have been performed
at very large scales using reverse computation with the ROSS
simulator []. Both checkpointing and reverse computation
present special challenges for our desired simulation mode.
There is a large amount (several TB) of application state to
save when simulating 100K-1M network endpoints, causing
a very high storage and time overhead. Checkpoint strate-
gies may not be feasible. Reverse computation also presents
significant challenges since we want to allow arbitrary code
to be executed on real software stacks. If the simulation
proceeds through a simple and well-defined state machine,
programming reverse computation can be straightforward. A
packet sent that empties a queue, e.g. can be reinserted into
the queue. It is not obvious (or likely even possible) to define
reverse computation for arbitrary code. Thus, despite potential
for increased parallelism with optimistic PDES, we pursue a
conservative strategy here.

Conservative approaches generally operate through event

queues []. Each LP maintains an event queue for every LP
it might receive events from (Figures 3,4). Each event queue
has an associated time stamp indicating the last known virtual
time at the other LP. As an LP receives events on a queue,
the new events advance the timestamp In Figure 3, the local
process (LP 0) has synchronized and received events with the
timestamp t = 8 and t = 17 from the remote LPs 1 and 2.
Because the lookahead is � = 10, LP 0 is guaranteed that LP 1
will not deliver anything new with timestamp less than 18 and
LP 2 will not deliver anything with timestamp less than 27.
The local process can therefore safely run Event C at t = 10,
Event B at t = 17 and advance time until t = 18. The local
process now stalls and is unable to run Event D. In the next
synchronization, LP 0 receives Event E with time t = 19.
It has not received any new messages from LP 2, but it can
still advance its time window until t = 27 and can safely run
Event E and Event D. This scheme requires an LP to regularly
receive events on each queue. If no events are received, the
queue time is never updated and an LP will block waiting for
updates. If such a block occurs, an LP must send so-called
null messages to “request” a time update. Once a new time
update is received, the LP can advance its time window and
run more events.

This scheme can be highly efficient for certain workloads.
Even if there are 100 LPs, each LP might only communi-
cate with, e.g., 3 other neighbors. Only local point-to-point
communication is required to synchronize times rather than a
global communication. When many events are sent between
LPs (i.e null messages are not needed), it also provides some
degree of asynchrony as LPs do not explicitly block waiting on
each other. For our workloads, however, the above algorithm
becomes highly inefficient. In many network topologies and
models, each LP is connected to every other LP, erasing
the benefit of local communication. Furthermore, our simula-
tor emphasizes coarse-grained compute and network models.
Large time gaps often exist between consecutive events, often
much larger than the lookahead. This leads to a pathological
situation in which LPs are consumed sending null messages
back and forth.

while t < t
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Here we instead use a global synchronization algorithm.
While in some ways the simplest, it actually represents an
optimization on the event queue framework for workloads en-
countered with macroscale SST. The simulation begins at t = 0
with lookahead � determined from the network parameters. We
consider a simulation with N

lp

logical processes. Within the
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checkpointing, the entire application state is saved at regular
intervals, providing a fallback point. In reverse computation,
the entire state is not saved - only an event list is maintained.
When violations occur, the events must provide a “reverse”
mechanism to undo all state changes. Checkpointing induces
a significant overhead even if no time violations occur. Reverse
computation only induces overhead when violations occur. De-
tailed packet-level network simulations have been performed
at very large scales using reverse computation with the ROSS
simulator []. Both checkpointing and reverse computation
present special challenges for our desired simulation mode.
There is a large amount (several TB) of application state to
save when simulating 100K-1M network endpoints, causing
a very high storage and time overhead. Checkpoint strate-
gies may not be feasible. Reverse computation also presents
significant challenges since we want to allow arbitrary code
to be executed on real software stacks. If the simulation
proceeds through a simple and well-defined state machine,
programming reverse computation can be straightforward. A
packet sent that empties a queue, e.g. can be reinserted into
the queue. It is not obvious (or likely even possible) to define
reverse computation for arbitrary code. Thus, despite potential
for increased parallelism with optimistic PDES, we pursue a
conservative strategy here.

Conservative approaches generally operate through event

queues []. Each LP maintains an event queue for every LP
it might receive events from (Figures 3,4). Each event queue
has an associated time stamp indicating the last known virtual
time at the other LP. As an LP receives events on a queue,
the new events advance the timestamp In Figure 3, the local
process (LP 0) has synchronized and received events with the
timestamp t = 8 and t = 17 from the remote LPs 1 and 2.
Because the lookahead is � = 10, LP 0 is guaranteed that LP 1
will not deliver anything new with timestamp less than 18 and
LP 2 will not deliver anything with timestamp less than 27.
The local process can therefore safely run Event C at t = 10,
Event B at t = 17 and advance time until t = 18. The local
process now stalls and is unable to run Event D. In the next
synchronization, LP 0 receives Event E with time t = 19.
It has not received any new messages from LP 2, but it can
still advance its time window until t = 27 and can safely run
Event E and Event D. This scheme requires an LP to regularly
receive events on each queue. If no events are received, the
queue time is never updated and an LP will block waiting for
updates. If such a block occurs, an LP must send so-called
null messages to “request” a time update. Once a new time
update is received, the LP can advance its time window and
run more events.

This scheme can be highly efficient for certain workloads.
Even if there are 100 LPs, each LP might only communi-
cate with, e.g., 3 other neighbors. Only local point-to-point
communication is required to synchronize times rather than a
global communication. When many events are sent between
LPs (i.e null messages are not needed), it also provides some
degree of asynchrony as LPs do not explicitly block waiting on
each other. For our workloads, however, the above algorithm
becomes highly inefficient. In many network topologies and
models, each LP is connected to every other LP, erasing
the benefit of local communication. Furthermore, our simula-
tor emphasizes coarse-grained compute and network models.
Large time gaps often exist between consecutive events, often
much larger than the lookahead. This leads to a pathological
situation in which LPs are consumed sending null messages
back and forth.
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induces overhead when violations occur. Detailed packet-level
network simulations have been performed at very large scales
using reverse computation with the ROSS simulator [?], [?].
Both checkpointing and reverse computation present special
challenges for our desired simulation mode. There is a large
amount (several TB) of application state to save when simulat-
ing 100K-1M network endpoints, causing a very high storage
and time overhead. Checkpoint strategies may not be feasible.
Reverse computation also presents significant challenges since
we want to allow arbitrary code to be executed on real software
stacks. If the simulation proceeds through a simple and well-
defined state machine, programming reverse computation can
be straightforward. A packet sent that empties a queue, e.g.
can be placed back into its original position in the queue to
reverse the event. It is not obvious (or likely even possible)
to define reverse computation for arbitrary code. Thus, despite
potential for increased parallelism with optimistic PDES, we
pursue a conservative strategy here.

Conservative approaches generally operate through event
queues [?], [?]. Each LP maintains an event queue for every
LP it might receive events from (Figures ??,??). Each event
queue has an associated time stamp indicating the last known
virtual time at the other LP. As an LP receives events on a
queue, the new events advance the timestamp. In Figure ??,
the local process (LP 0) has synchronized and received events
with the timestamp t = 8 and t = 17 from the remote LPs 1

and 2. Because the lookahead is � = 10, LP 0 is guaranteed
that LP 1 will not deliver anything new with timestamp less
than 18 and LP 2 will not deliver anything with timestamp less
than 27. The local process can therefore safely run event C at
t = 10, event B at t = 17 and advance time until t = 18. The
local process now stalls and is unable to run event D. In the
next synchronization, LP 0 receives event E with time t = 19.
It has not received any new messages from LP 2, but it can
still advance its time window until t = 27 and can safely run
event E and event D. This scheme requires an LP to regularly
receive events on each queue. If no events are received, the
queue time is never updated and an LP will block waiting for
updates. If such a block occurs, an LP must send so-called null
messages to “request” a time update (although methods have
avoiding null messages have been proposed [?]). Once a new
time update is received, the LP can advance its time window
and run more events.

This scheme can be highly efficient for certain workloads.
Even if there are 100 LPs, each LP might only communicate
with, e.g., 3 other neighbors. Only local point-to-point commu-
nication is required to synchronize times rather than a global
communication. When many events are sent between LPs (i.e
null messages not needed), it also provides some asynchrony
as LPs do not explicitly block waiting on each other.

For our workloads, however, the above algorithm becomes
highly inefficient. In many network topologies and models,
each LP is connected to every other LP, erasing the benefit of
local communication. Furthermore, our simulator emphasizes
coarse-grained compute and network models. Large time gaps
often exist between consecutive events, often much larger than
the lookahead. This leads to a pathological situation in which
LPs are consumed sending null messages back and forth.
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Here we instead use a global synchronization algorithm.
While in some ways the simplest, it actually represents an
optimization on the event queue framework for workloads en-
countered with macroscale SST. The simulation begins at t = 0
with lookahead � determined from the network parameters. We
consider a simulation with N

lp

logical processes. Within the
time window (0, �) each LP will call MPI Isend to deliver
events to other LPs. At t = �, every LP performs two blocking
MPI collectives. First, they perform a reduce-scatter with a
sum function, illustrated in Figure ??. Each LP tracks the total
number of events and the total number of bytes sent to every
other LP. This array of size 2N

lp

is passed as input to the
reduce-scatter. Every LP receives as input from the reduce-
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checkpointing, the entire application state is saved at regular
intervals, providing a fallback point. In reverse computation,
the entire state is not saved - only an event list is maintained.
When violations occur, the events must provide a “reverse”
mechanism to undo all state changes. Checkpointing induces
a significant overhead even if no time violations occur. Reverse
computation only induces overhead when violations occur. De-
tailed packet-level network simulations have been performed
at very large scales using reverse computation with the ROSS
simulator []. Both checkpointing and reverse computation
present special challenges for our desired simulation mode.
There is a large amount (several TB) of application state to
save when simulating 100K-1M network endpoints, causing
a very high storage and time overhead. Checkpoint strate-
gies may not be feasible. Reverse computation also presents
significant challenges since we want to allow arbitrary code
to be executed on real software stacks. If the simulation
proceeds through a simple and well-defined state machine,
programming reverse computation can be straightforward. A
packet sent that empties a queue, e.g. can be reinserted into
the queue. It is not obvious (or likely even possible) to define
reverse computation for arbitrary code. Thus, despite potential
for increased parallelism with optimistic PDES, we pursue a
conservative strategy here.

Conservative approaches generally operate through event

queues []. Each LP maintains an event queue for every LP
it might receive events from (Figures 3,4). Each event queue
has an associated time stamp indicating the last known virtual
time at the other LP. As an LP receives events on a queue,
the new events advance the timestamp In Figure 3, the local
process (LP 0) has synchronized and received events with the
timestamp t = 8 and t = 17 from the remote LPs 1 and 2.
Because the lookahead is � = 10, LP 0 is guaranteed that LP 1
will not deliver anything new with timestamp less than 18 and
LP 2 will not deliver anything with timestamp less than 27.
The local process can therefore safely run Event C at t = 10,
Event B at t = 17 and advance time until t = 18. The local
process now stalls and is unable to run Event D. In the next
synchronization, LP 0 receives Event E with time t = 19.
It has not received any new messages from LP 2, but it can
still advance its time window until t = 27 and can safely run
Event E and Event D. This scheme requires an LP to regularly
receive events on each queue. If no events are received, the
queue time is never updated and an LP will block waiting for
updates. If such a block occurs, an LP must send so-called
null messages to “request” a time update. Once a new time
update is received, the LP can advance its time window and
run more events.

This scheme can be highly efficient for certain workloads.
Even if there are 100 LPs, each LP might only communi-
cate with, e.g., 3 other neighbors. Only local point-to-point
communication is required to synchronize times rather than a
global communication. When many events are sent between
LPs (i.e null messages are not needed), it also provides some
degree of asynchrony as LPs do not explicitly block waiting on
each other. For our workloads, however, the above algorithm
becomes highly inefficient. In many network topologies and
models, each LP is connected to every other LP, erasing
the benefit of local communication. Furthermore, our simula-
tor emphasizes coarse-grained compute and network models.
Large time gaps often exist between consecutive events, often
much larger than the lookahead. This leads to a pathological
situation in which LPs are consumed sending null messages
back and forth.
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Here we instead use a global synchronization algorithm.
While in some ways the simplest, it actually represents an
optimization on the event queue framework for workloads en-
countered with macroscale SST. The simulation begins at t = 0
with lookahead � determined from the network parameters. We
consider a simulation with N

lp

logical processes. Within the
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  dependent	
  upon	
  simula%on	
  framework	
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Experiments we care about are model-driven – 
simulator is a tool to get us what we really care about! 



Virtual()me(

Time(window(

LP(0(

LP(1(

Scheduling(future(events(

Design	
  considera%ons	
  for	
  an	
  op%mal	
  	
  
high	
  fidelity	
  (cycle-­‐level)	
  simulator	
  	
  
§  Many	
  events	
  per	
  %me	
  window	
  
§  No	
  major	
  %me	
  gaps	
  (generally	
  always	
  have	
  events)	
  
§  Components	
  with	
  different	
  link	
  latencies	
  and	
  clocks	
  
§  Domain	
  specific	
  synchroniza%on	
  algorithms	
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Design	
  considera%ons	
  for	
  an	
  	
  
op%mal	
  coarse-­‐grained	
  structural	
  simulator	
  
§  May	
  have	
  a	
  few	
  events	
  per	
  %me	
  window	
  –	
  or	
  might	
  have	
  a	
  lot	
  
§  Can	
  have	
  large	
  gaps	
  	
  -­‐	
  %me	
  windows	
  with	
  no	
  events	
  in	
  them	
  
§  Huge	
  number	
  of	
  components,	
  but	
  with	
  the	
  same	
  link	
  latency	
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Abstract machine model with 
congestion via buffers and queues 



Design	
  considera%ons	
  for	
  an	
  	
  
op%mal	
  coarse-­‐grained	
  structural	
  simulator	
  
§  May	
  have	
  a	
  few	
  events	
  per	
  %me	
  window	
  –	
  or	
  might	
  have	
  a	
  lot	
  
§  Can	
  have	
  large	
  gaps	
  	
  -­‐	
  %me	
  windows	
  with	
  no	
  events	
  in	
  them	
  
§  Huge	
  number	
  of	
  components,	
  but	
  with	
  the	
  same	
  link	
  latency	
  

16	
  

Virtual()me(

Time(window(

LP(0(

LP(1(

Scheduling(future(events(

Compute call might take 
5ms but link latencies in 
the network are only 
100ns! 

MPI calls start 
generating 
network traffic 



Design	
  considera%ons	
  for	
  an	
  	
  
op%mal	
  coarse-­‐grained	
  structural	
  simulator	
  
§  May	
  have	
  a	
  few	
  events	
  per	
  %me	
  window	
  –	
  or	
  might	
  have	
  a	
  lot	
  
§  Can	
  have	
  large	
  gaps	
  	
  -­‐	
  %me	
  windows	
  with	
  no	
  events	
  in	
  them	
  
§  Huge	
  number	
  of	
  components,	
  but	
  with	
  the	
  same	
  link	
  latency	
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Design	
  considera%ons	
  for	
  a	
  simulator	
  	
  
based	
  on	
  analy%cal	
  models	
  
§  Only	
  a	
  few	
  events	
  per	
  %me	
  window	
  
§  Many	
  different	
  components,	
  but	
  all	
  connected	
  to	
  each	
  other	
  

18	
  

Compute 
Node

Compute 
Node

Compute 
Node

Compute 
Node

Compute 
Node

Compute 
Node

α = Latency 
β = Inverse bandwidth 

N =Message size 

ΔT=α + β N 



Unifying	
  elements	
  across	
  all	
  fideli%es	
  

§  Sending	
  network	
  messages	
  
§  Portability	
  layer	
  to	
  network	
  APIs	
  
§  Serializa%on	
  library	
  for	
  event	
  objects	
  

§  Local/global	
  virtual	
  %me	
  
§  Event	
  ordering	
  and	
  correctness	
  
§  Model	
  input	
  and	
  sta%s%cs	
  collec%on	
  

§  Par%%oning	
  components	
  across	
  
parallel	
  workers	
  
§  Mapping	
  of	
  LPs	
  to	
  physical	
  nodes	
  
§  Op%mize	
  par%%on	
  for	
  cheaper	
  

communica%on	
  

§  Managing/scheduling	
  events	
  
§  Map/calendar/heap	
  data	
  structures	
  
§  Cancel	
  events	
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  nodes	
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  cheaper	
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  structures	
  
§  Cancel	
  events	
  

21	
  

Coarse-grained time 

Cycle-level time 



Unifying	
  elements	
  across	
  all	
  fideli%es	
  

§  Sending	
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  and	
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  across	
  
parallel	
  workers	
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Unifying	
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  all	
  fideli%es	
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T=1,T=
2, T=3 

T=7 T=17, 
T=19 

T=25 T=36 

T=100 

O(Log(N)) 
heap 

O(1) calendar 



Disunifying	
  elements	
  across	
  fideli%es:	
  	
  
par%%oning	
  strategy	
  and	
  parallel	
  algorithm	
  
§  Par%%oning	
  strategy	
  

§  Cycle-­‐level	
  has	
  heterogeneous	
  components	
  –	
  par%%oning	
  really	
  requires	
  
intelligent	
  graph	
  par%%oner	
  

§  Coarse-­‐grained	
  has	
  many	
  homogenous	
  components	
  –	
  par%%oning	
  s%ll	
  
requires	
  intelligent	
  par%%oner,	
  but	
  more	
  about	
  minimizing	
  graph	
  connec%vity	
  
than	
  best	
  link	
  latency	
  

§  Parallel	
  algorithm	
  
§  Global	
  assump%ons	
  on	
  interoperability	
  components	
  

§  Can	
  any	
  memory	
  subsystem	
  model	
  interact	
  with	
  any	
  processor	
  or	
  network	
  
model?	
  Or	
  are	
  event	
  messages	
  only	
  “self-­‐compa%ble”?	
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Polymorphic	
  components	
  can	
  be	
  tuned	
  
for	
  different	
  problems	
  
§  Components	
  don’t	
  need	
  to	
  be	
  aware	
  of	
  par%%oning	
  strategy	
  
§  Components	
  don’t	
  need	
  to	
  be	
  aware	
  of	
  parallel	
  algorithm	
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The  Simulation  framework  consists  of  a  i)  Core  and  ii)  interacting  Components  that  form  the  
architecture  simulation  model.  The  core  provides  services  common  across  models,  such  as  

instantiating  components,  providing  configuration  information,  partitioning  models  for  parallel  

execution,  coordinating  a  common  concept  of  time  (e.g.,  in  parallel  execution),  and  transparently  

handling  parallel  and  local  communication  of  events  between  model  components.  Model  

components  communicate  through  Links  which  deliver  Events  between  components.  Proper  
temporal  sequencing  of  component  execution  and  event  delivery  is  transparently  handled  by    the  

core.  Thus  architecture  component  models  are  easily  re-­used  and  shared  across  system-­level  

simulation  models.  Parallel  execution  is  handled  by  partitioning  the  simulation  model  and  

assigning  components  to  physical  cores  in  a  target  parallel  machine.    

A  key  principle  of  the  design  is  that  model  components  are  oblivious  to  sequential  or  parallel  

execution,  and  hence  are  transparently  reusable  in  multiple  simulation  scenarios.  For  example,  

when  events  are  communicated  between  components  over  a  link,  the  component  is  unaware  

whether  the  destination  component  is  local  or  remote.  Delivery  is  handled  by  the  core  including  

any  serialization  necessary  for  remote  communication  in  the  event  that  the  destination  core  is  

remotely  located.  

The  simulation  model  as  a  whole  is  specified  via  a  system  description  that  specifies  

components,  their  interconnection,  and  their  configuration  including  component-­level  and  

system-­level  parameters.  The  latter  are  used  in  transparently  partitioning  the  model  for  parallel  

execution.  Our  current  efforts  are  focused  on  two  main  aspects  of  the  preceding  framework  -­  i)  

the  core  API,  and  ii)  the  component  API.  These  efforts  have  been  influenced  by  several  ongoing  

projects  notably  SST,  GEM5,  and  Manifold.  Preliminary  efforts  at  migrating  models  between  SST  

and  Manifold  supports  the  anticipated  benefits  of  the  common  API.    

A  Call  To  Arms  
Our  position  is  that  this  API  is  critical  for  the  architecture  community,  but  requires  broad  support  

to  be  successful.  We  ask  for  community  input  and  collaboration  on  this  ongoing  design  project.  

Please  join  in  this  effort  by  signing  up  to  our  mailing  list  ______  and  visiting  our  design  wiki  

______.  

  



Challenge	
  problem:	
  mixing	
  fideli%es	
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LP	
  with	
  heavy-­‐weight	
  node	
  opera%ng	
  on	
  different	
  %me	
  scales,	
  but	
  look	
  
ahead	
  determined	
  by	
  coarse-­‐grained	
  links!	
  

Router/
Switch

Compute 
Nodes



Challenge	
  problem:	
  mixing	
  fideli%es	
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Router/
Switch

Compute 
Nodes

Par%%on	
  creates	
  op%mal	
  
lookahead	
  on	
  high	
  latency	
  links	
  



Challenge	
  problem:	
  mixing	
  fideli%es	
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Router/
Switch

Compute 
Nodes Good partitioning balances 

number of events per LP 



Challenge	
  problem:	
  mixing	
  fideli%es	
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Router/
Switch

Compute 
Nodes

Simulator core 
problem, not a 
domain-specific 
problem 



Challenge	
  problem:	
  histogram	
  of	
  	
  
message	
  delays	
  in	
  PDES	
  run	
  
§  Tag	
  packet	
  going	
  out,	
  going	
  in	
  with	
  %me	
  

§  Add	
  single	
  field	
  to	
  exis%ng	
  network	
  message	
  object	
  
§  No%on	
  of	
  global	
  %me	
  

§  Histogram	
  object	
  that	
  reduces/collects	
  data	
  
§  hist-­‐>add_one(delay)	
  
§  Object	
  must	
  output	
  usable	
  data	
  format/figure	
  at	
  end	
  of	
  simula%on	
  
§  Data	
  must	
  be	
  reduced	
  across	
  LPs	
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Minimal routing Adaptive routing 



Challenge	
  problem:	
  histogram	
  of	
  	
  
message	
  delays	
  in	
  PDES	
  run	
  

Majority	
  of	
  work	
  should	
  already	
  be	
  	
  
done	
  for	
  us	
  in	
  common	
  core!	
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Minimal routing Adaptive routing 



MODSIM	
  is	
  Camp	
  David,	
  not	
  Sinai	
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Structural simulation toolkit at Sandia (SST) is a jumping 
off point for discussing universal simulation standards, 
not C++ framework written on stone tablets! 



MODSIM	
  is	
  Camp	
  David,	
  not	
  Sinai	
  

33	
  

We think our PDES core is mature and lightweight 
enough to make your life easer – enable you to use your 
own code, not force you to use ours! 



Range	
  of	
  simula%on:	
  success	
  stories	
  so	
  far	
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Coarse grain 
+ analytic 

Coarse grain Cycle Level Mixed 
fidelity  

  

The  Simulation  framework  consists  of  a  i)  Core  and  ii)  interacting  Components  that  form  the  
architecture  simulation  model.  The  core  provides  services  common  across  models,  such  as  

instantiating  components,  providing  configuration  information,  partitioning  models  for  parallel  

execution,  coordinating  a  common  concept  of  time  (e.g.,  in  parallel  execution),  and  transparently  

handling  parallel  and  local  communication  of  events  between  model  components.  Model  
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when  events  are  communicated  between  components  over  a  link,  the  component  is  unaware  

whether  the  destination  component  is  local  or  remote.  Delivery  is  handled  by  the  core  including  

any  serialization  necessary  for  remote  communication  in  the  event  that  the  destination  core  is  
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system-­level  parameters.  The  latter  are  used  in  transparently  partitioning  the  model  for  parallel  

execution.  Our  current  efforts  are  focused  on  two  main  aspects  of  the  preceding  framework  -­  i)  

the  core  API,  and  ii)  the  component  API.  These  efforts  have  been  influenced  by  several  ongoing  

projects  notably  SST,  GEM5,  and  Manifold.  Preliminary  efforts  at  migrating  models  between  SST  

and  Manifold  supports  the  anticipated  benefits  of  the  common  API.    

A  Call  To  Arms  
Our  position  is  that  this  API  is  critical  for  the  architecture  community,  but  requires  broad  support  

to  be  successful.  We  ask  for  community  input  and  collaboration  on  this  ongoing  design  project.  

Please  join  in  this  effort  by  signing  up  to  our  mailing  list  ______  and  visiting  our  design  wiki  

______.  
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MODSIM	
  Summary	
  

§  Gaps:	
  	
  
§  Lack	
  of	
  standards,	
  lack	
  of	
  code	
  reuse	
  

§  Bigger	
  picture	
  and	
  poten%al	
  collaborators:	
  	
  
§  Everyone?	
  Anyone	
  who	
  wants	
  to	
  scale	
  experiments	
  through	
  PDES	
  or	
  wants	
  to	
  

compose	
  models	
  mixing	
  different	
  fidelity/physics	
  

§  What	
  would	
  make	
  it	
  easier	
  to	
  leverage	
  results	
  from	
  other	
  groups?	
  
§  If	
  you	
  find	
  yourself	
  wri%ng	
  a	
  PDES	
  core,	
  who	
  you	
  gonna	
  call…	
  	
  

§  Development/adop5on	
  of	
  standards	
  will	
  be	
  driven	
  by	
  
collabora5on	
  and	
  refined	
  through	
  use	
  cases	
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