
Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin
Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND NO. 2011-XXXXP

Crea%ng	 the	 Next	 Genera%on	 of	 Stable,	 Interoperable	 and	
Performant	 Simulator	 –	 A	 Call	 for	 Open	 Standards	

Jeremiah	 Wilke*,	 Joseph	 Kenny*,	 Robert	 Clay*,	 Simon	 Hammond+,	 	
Arun	 Rodrigues+,	 ScoG	 Hemmert+,	 James	 Ang+,	 Sudhakar	 Yalamanchilił	

*Sandia	 CA,	 +Sandia	 ABQ,	 łGeorgia	 Tech	
	

We	 need	 models	 of	 varying	 fidelity	
How	 many	 tools	 do	 we	 need	 for	 all	 of	 them?	
§  High	 fidelity	

§  What	 you	 care	 about	 only	 at	 exists	 at	 cycle-‐
accurate	 detail	 	
§  Cache	 reuse	 policies	 in	 memory	
§  Flit-‐level	 flow	 control	

§  Valida%on	 of	 lower	 fidelity	 models	

§  Medium	 fidelity	
§  Coarse-‐grained	 modeling	 of	 architecture	 at	

system	 scale	
§  Adap%ve	 rou%ng	 without	 flit	 detail	
§  Scaling	 of	 collec%ves	 with	 network	 conges%on	

§  Valida%on	 of	 cons%tu%ve	 models	 at	 scale	

§  Cons%tu%ve	 models	
§  Poten%ally	 good	 accuracy	 with	 right	 fiXng	
§  Rapid	 parameter	 space	 explora%on	

2	

We	 need	 models	 of	 varying	 fidelity	
How	 many	 tools	 do	 we	 need	 for	 all	 of	 them?	

3	

SST
Structural Simulation Toolkit

We	 need	 models	 of	 varying	 fidelity	
How	 many	 tools	 do	 we	 need	 for	 all	 of	 them?	

4	

SST
Sonic Screwdriver Toolchain

How	 do	 we	 defeat	 the	 Daleks?	

§  Common	 Core	
§  Scale	 up	 performance	 =	 scale	 up	

performance	 simula%on	 =	 parallel	
simula%on	 (PDES)	

§  Composability	
§  Define	 standards	 for	 composing	 models	

that	 speak	 same	 language	 and	 share	 the	
same	 no%on	 of	 %me	 	

§  Community	
§  Concerted	 effort	 to	 define	 standards	 and	

reuse	 code	

5	

How	 do	 we	 defeat	 the	 Daleks?	

§  Common	 Core	
§  Scale	 up	 performance	 =	 scale	 up	

performance	 simula%on	 =	 parallel	
simula%on	 (PDES)	

§  Composability	
§  Define	 standards	 for	 composing	 models	

that	 speak	 same	 language	 and	 share	 the	
same	 no%on	 of	 %me	 	

§  Community	
§  Concerted	 effort	 to	 define	 standards	 and	

reuse	 code	

6	

Virtual()me(

Time(window(

LP(0(

LP(1(

Scheduling(future(events(

What	 is	 the	 major	 source	 of	 suffering	 in	
parallel	 discrete	 event	 simula%on	 (PDES)?	

§  Scale	 up	 machines	 =	 scale	 up	 simula%ons	 of	 machines	 =	 PDES	
§  Need	 event	 management	 and	 scheduling	

§  Avoid	 %me-‐order	 viola%ons!	

7	

Dependencies
between events

What	 is	 the	 major	 source	 of	 suffering	 in	
parallel	 discrete	 event	 simula%on?	

8	

Virtual()me(

Time(window(

LP(0(

LP(1(

Scheduling(future(events(

Wall()me(=(2s(

Violation!!!

What	 is	 the	 major	 source	 of	 suffering	 in	
parallel	 discrete	 event	 simula%on?	

9	

Virtual()me(

Time(window(

LP(0(

LP(1(

Scheduling(future(events(

Wall()me(=(2s(

True	 for	 all	 models	
and	 fideli0es!	

Virtual()me(

Time(window(

LP(0(

LP(1(

Scheduling(future(events(

What	 is	 the	 major	 source	 of	 suffering	 in	
parallel	 discrete	 event	 simula%on?	
§  Parallelism	 possible	 mainly	 from	 lookahead	 (safe	 %me	 window)	

based	 on	 virtual	 latency	 between	 components	

10	

Solu%ons	 to	 the	 problem	 exist,	 but	 are	 	
non-‐trivial:	 Why	 rewrite	 over	 and	 over?	
§  “Naïve”	 conserva%ve	 %me-‐stepping	 algorithm	

§  Global,	 collec%ve	 communica%on	
§  Communica%on	 op%miza%ons	 to	 lower	 prefactor,	 but	 has	 scalability	 limits	

11	

LP#2#
Queue# Event#B#

t=17#Lookahead##
δ=10#

tmin=17#tmax=27#

Event#C#
t=10#

Event#D#
T=21#

Local#queue#(LP#0)#

tlocal=7#
Local# Global#

tmax=18#

LP#1#
Queue# Event#A#

T=8#Tmin=8#Tmax=18#

Figure 3. Snapshot of events and timestamps for example conservative PDES
with LP queues

LP#2#
Queue#

Lookahead##
δ=10#

tmin=17#tmax=27#

Event#D#
T=21#

Local#queue#(LP#0)#

tlocal=17#
Local# Global#

tmax=27#

LP#1#
Queue# Event#E#

T=19#Tmin=19#Tmax=29#

Figure 4. Snapshot of events and timestamps for example conservative PDES
with LP queues

checkpointing, the entire application state is saved at regular
intervals, providing a fallback point. In reverse computation,
the entire state is not saved - only an event list is maintained.
When violations occur, the events must provide a “reverse”
mechanism to undo all state changes. Checkpointing induces
a significant overhead even if no time violations occur. Reverse
computation only induces overhead when violations occur. De-
tailed packet-level network simulations have been performed
at very large scales using reverse computation with the ROSS
simulator []. Both checkpointing and reverse computation
present special challenges for our desired simulation mode.
There is a large amount (several TB) of application state to
save when simulating 100K-1M network endpoints, causing
a very high storage and time overhead. Checkpoint strate-
gies may not be feasible. Reverse computation also presents
significant challenges since we want to allow arbitrary code
to be executed on real software stacks. If the simulation
proceeds through a simple and well-defined state machine,
programming reverse computation can be straightforward. A
packet sent that empties a queue, e.g. can be reinserted into
the queue. It is not obvious (or likely even possible) to define
reverse computation for arbitrary code. Thus, despite potential
for increased parallelism with optimistic PDES, we pursue a
conservative strategy here.

Conservative approaches generally operate through event

queues []. Each LP maintains an event queue for every LP
it might receive events from (Figures 3,4). Each event queue
has an associated time stamp indicating the last known virtual
time at the other LP. As an LP receives events on a queue,
the new events advance the timestamp In Figure 3, the local
process (LP 0) has synchronized and received events with the
timestamp t = 8 and t = 17 from the remote LPs 1 and 2.
Because the lookahead is � = 10, LP 0 is guaranteed that LP 1
will not deliver anything new with timestamp less than 18 and
LP 2 will not deliver anything with timestamp less than 27.
The local process can therefore safely run Event C at t = 10,
Event B at t = 17 and advance time until t = 18. The local
process now stalls and is unable to run Event D. In the next
synchronization, LP 0 receives Event E with time t = 19.
It has not received any new messages from LP 2, but it can
still advance its time window until t = 27 and can safely run
Event E and Event D. This scheme requires an LP to regularly
receive events on each queue. If no events are received, the
queue time is never updated and an LP will block waiting for
updates. If such a block occurs, an LP must send so-called
null messages to “request” a time update. Once a new time
update is received, the LP can advance its time window and
run more events.

This scheme can be highly efficient for certain workloads.
Even if there are 100 LPs, each LP might only communi-
cate with, e.g., 3 other neighbors. Only local point-to-point
communication is required to synchronize times rather than a
global communication. When many events are sent between
LPs (i.e null messages are not needed), it also provides some
degree of asynchrony as LPs do not explicitly block waiting on
each other. For our workloads, however, the above algorithm
becomes highly inefficient. In many network topologies and
models, each LP is connected to every other LP, erasing
the benefit of local communication. Furthermore, our simula-
tor emphasizes coarse-grained compute and network models.
Large time gaps often exist between consecutive events, often
much larger than the lookahead. This leads to a pathological
situation in which LPs are consumed sending null messages
back and forth.

while t < t
termination

do
Run all events until t + �
Log event sends to S = {NLP0

events

, NLP0
bytes

, NLP1
events

, . . .}
MPI ReduceScatter with SUM array S
MPI ReduceScatter returns N total

events

, N total

bytes

N left

bytes

= N total

bytes

for msgNum < N total

events

do
MPI Recv(void*, MPI ANY, N left

bytes

)
N left

bytes

= N left

bytes

� msgSize
end for
Determine tlocal

min

MPI Allreduce(tglobal

min

, tlocal

min

)
t = tglobal

min

end while

Here we instead use a global synchronization algorithm.
While in some ways the simplest, it actually represents an
optimization on the event queue framework for workloads en-
countered with macroscale SST. The simulation begins at t = 0
with lookahead � determined from the network parameters. We
consider a simulation with N

lp

logical processes. Within the

Figure 3. Snapshot of events and timestamps for example conservative PDES
with LP queues

LP#2#
Queue# Event#B#

t=17#Lookahead##
δ=10#

tmin=17#tmax=27#

Event#C#
t=10#

Event#D#
T=21#

Local#queue#(LP#0)#

tlocal=7#
Local# Global#

tmax=18#

LP#1#
Queue# Event#A#

T=8#Tmin=8#Tmax=18#

Figure 3. Snapshot of events and timestamps for example conservative PDES
with LP queues

LP#2#
Queue#

Lookahead##
δ=10#

tmin=17#tmax=27#

Event#D#
T=21#

Local#queue#(LP#0)#

tlocal=17#
Local# Global#

tmax=27#

LP#1#
Queue# Event#E#

T=19#Tmin=19#Tmax=29#

Figure 4. Snapshot of events and timestamps for example conservative PDES
with LP queues

checkpointing, the entire application state is saved at regular
intervals, providing a fallback point. In reverse computation,
the entire state is not saved - only an event list is maintained.
When violations occur, the events must provide a “reverse”
mechanism to undo all state changes. Checkpointing induces
a significant overhead even if no time violations occur. Reverse
computation only induces overhead when violations occur. De-
tailed packet-level network simulations have been performed
at very large scales using reverse computation with the ROSS
simulator []. Both checkpointing and reverse computation
present special challenges for our desired simulation mode.
There is a large amount (several TB) of application state to
save when simulating 100K-1M network endpoints, causing
a very high storage and time overhead. Checkpoint strate-
gies may not be feasible. Reverse computation also presents
significant challenges since we want to allow arbitrary code
to be executed on real software stacks. If the simulation
proceeds through a simple and well-defined state machine,
programming reverse computation can be straightforward. A
packet sent that empties a queue, e.g. can be reinserted into
the queue. It is not obvious (or likely even possible) to define
reverse computation for arbitrary code. Thus, despite potential
for increased parallelism with optimistic PDES, we pursue a
conservative strategy here.

Conservative approaches generally operate through event

queues []. Each LP maintains an event queue for every LP
it might receive events from (Figures 3,4). Each event queue
has an associated time stamp indicating the last known virtual
time at the other LP. As an LP receives events on a queue,
the new events advance the timestamp In Figure 3, the local
process (LP 0) has synchronized and received events with the
timestamp t = 8 and t = 17 from the remote LPs 1 and 2.
Because the lookahead is � = 10, LP 0 is guaranteed that LP 1
will not deliver anything new with timestamp less than 18 and
LP 2 will not deliver anything with timestamp less than 27.
The local process can therefore safely run Event C at t = 10,
Event B at t = 17 and advance time until t = 18. The local
process now stalls and is unable to run Event D. In the next
synchronization, LP 0 receives Event E with time t = 19.
It has not received any new messages from LP 2, but it can
still advance its time window until t = 27 and can safely run
Event E and Event D. This scheme requires an LP to regularly
receive events on each queue. If no events are received, the
queue time is never updated and an LP will block waiting for
updates. If such a block occurs, an LP must send so-called
null messages to “request” a time update. Once a new time
update is received, the LP can advance its time window and
run more events.

This scheme can be highly efficient for certain workloads.
Even if there are 100 LPs, each LP might only communi-
cate with, e.g., 3 other neighbors. Only local point-to-point
communication is required to synchronize times rather than a
global communication. When many events are sent between
LPs (i.e null messages are not needed), it also provides some
degree of asynchrony as LPs do not explicitly block waiting on
each other. For our workloads, however, the above algorithm
becomes highly inefficient. In many network topologies and
models, each LP is connected to every other LP, erasing
the benefit of local communication. Furthermore, our simula-
tor emphasizes coarse-grained compute and network models.
Large time gaps often exist between consecutive events, often
much larger than the lookahead. This leads to a pathological
situation in which LPs are consumed sending null messages
back and forth.

while t < t
termination

do
Run all events until t + �
Log event sends to S = {NLP0

events

, NLP0
bytes

, NLP1
events

, . . .}
MPI ReduceScatter with SUM array S
MPI ReduceScatter returns N total

events

, N total

bytes

N left

bytes

= N total

bytes

for msgNum < N total

events

do
MPI Recv(void*, MPI ANY, N left

bytes

)
N left

bytes

= N left

bytes

� msgSize
end for
Determine tlocal

min

MPI Allreduce(tglobal

min

, tlocal

min

)
t = tglobal

min

end while

Here we instead use a global synchronization algorithm.
While in some ways the simplest, it actually represents an
optimization on the event queue framework for workloads en-
countered with macroscale SST. The simulation begins at t = 0
with lookahead � determined from the network parameters. We
consider a simulation with N

lp

logical processes. Within the

Figure 4. Snapshot of events and timestamps for example conservative PDES
with LP queues

induces overhead when violations occur. Detailed packet-level
network simulations have been performed at very large scales
using reverse computation with the ROSS simulator [?], [?].
Both checkpointing and reverse computation present special
challenges for our desired simulation mode. There is a large
amount (several TB) of application state to save when simulat-
ing 100K-1M network endpoints, causing a very high storage
and time overhead. Checkpoint strategies may not be feasible.
Reverse computation also presents significant challenges since
we want to allow arbitrary code to be executed on real software
stacks. If the simulation proceeds through a simple and well-
defined state machine, programming reverse computation can
be straightforward. A packet sent that empties a queue, e.g.
can be placed back into its original position in the queue to
reverse the event. It is not obvious (or likely even possible)
to define reverse computation for arbitrary code. Thus, despite
potential for increased parallelism with optimistic PDES, we
pursue a conservative strategy here.

Conservative approaches generally operate through event
queues [?], [?]. Each LP maintains an event queue for every
LP it might receive events from (Figures ??,??). Each event
queue has an associated time stamp indicating the last known
virtual time at the other LP. As an LP receives events on a
queue, the new events advance the timestamp. In Figure ??,
the local process (LP 0) has synchronized and received events
with the timestamp t = 8 and t = 17 from the remote LPs 1

and 2. Because the lookahead is � = 10, LP 0 is guaranteed
that LP 1 will not deliver anything new with timestamp less
than 18 and LP 2 will not deliver anything with timestamp less
than 27. The local process can therefore safely run event C at
t = 10, event B at t = 17 and advance time until t = 18. The
local process now stalls and is unable to run event D. In the
next synchronization, LP 0 receives event E with time t = 19.
It has not received any new messages from LP 2, but it can
still advance its time window until t = 27 and can safely run
event E and event D. This scheme requires an LP to regularly
receive events on each queue. If no events are received, the
queue time is never updated and an LP will block waiting for
updates. If such a block occurs, an LP must send so-called null
messages to “request” a time update (although methods have
avoiding null messages have been proposed [?]). Once a new
time update is received, the LP can advance its time window
and run more events.

This scheme can be highly efficient for certain workloads.
Even if there are 100 LPs, each LP might only communicate
with, e.g., 3 other neighbors. Only local point-to-point commu-
nication is required to synchronize times rather than a global
communication. When many events are sent between LPs (i.e
null messages not needed), it also provides some asynchrony
as LPs do not explicitly block waiting on each other.

For our workloads, however, the above algorithm becomes
highly inefficient. In many network topologies and models,
each LP is connected to every other LP, erasing the benefit of
local communication. Furthermore, our simulator emphasizes
coarse-grained compute and network models. Large time gaps
often exist between consecutive events, often much larger than
the lookahead. This leads to a pathological situation in which
LPs are consumed sending null messages back and forth.

while t < t
termination

do
Run all events until t + �
Log event sends to S = {NLP0

events

, NLP0
bytes

, NLP1
events

, . . .}
MPI ReduceScatter with SUM array S
MPI ReduceScatter returns N total

events

, N total

bytes

N left

bytes

= N total

bytes

for msgNum < N total

events

do
MPI Recv(void*, MPI ANY, N left

bytes

)
N left

bytes

= N left

bytes

� msgSize
end for
Determine tlocal

min

MPI Allreduce(tglobal

min

, tlocal

min

)
t = tglobal

min

end while

Here we instead use a global synchronization algorithm.
While in some ways the simplest, it actually represents an
optimization on the event queue framework for workloads en-
countered with macroscale SST. The simulation begins at t = 0
with lookahead � determined from the network parameters. We
consider a simulation with N

lp

logical processes. Within the
time window (0, �) each LP will call MPI Isend to deliver
events to other LPs. At t = �, every LP performs two blocking
MPI collectives. First, they perform a reduce-scatter with a
sum function, illustrated in Figure ??. Each LP tracks the total
number of events and the total number of bytes sent to every
other LP. This array of size 2N

lp

is passed as input to the
reduce-scatter. Every LP receives as input from the reduce-

Solu%ons	 to	 the	 problem	 exist,	 but	 are	 	
non-‐trivial:	 Why	 rewrite	 over	 and	 over?	
§  Conserva%ve	 algorithm	 with	 event	 queues:	 Op%miza%on	 to	 limit	

communica%on	 for	 LP’s	 that	 are	 “connected”	
§  Local,	 point-‐to-‐point	 communica%on	
§  More	 difficult	 to	 implement	

12	

LP#2#
Queue# Event#B#

t=17#Lookahead##
δ=10#

tmin=17#tmax=27#

Event#C#
t=10#

Event#D#
T=21#

Local#queue#(LP#0)#

tlocal=7#
Local# Global#

tmax=18#

LP#1#
Queue# Event#A#

T=8#Tmin=8#Tmax=18#

Figure 3. Snapshot of events and timestamps for example conservative PDES
with LP queues

LP#2#
Queue#

Lookahead##
δ=10#

tmin=17#tmax=27#

Event#D#
T=21#

Local#queue#(LP#0)#

tlocal=17#
Local# Global#

tmax=27#

LP#1#
Queue# Event#E#

T=19#Tmin=19#Tmax=29#

Figure 4. Snapshot of events and timestamps for example conservative PDES
with LP queues

checkpointing, the entire application state is saved at regular
intervals, providing a fallback point. In reverse computation,
the entire state is not saved - only an event list is maintained.
When violations occur, the events must provide a “reverse”
mechanism to undo all state changes. Checkpointing induces
a significant overhead even if no time violations occur. Reverse
computation only induces overhead when violations occur. De-
tailed packet-level network simulations have been performed
at very large scales using reverse computation with the ROSS
simulator []. Both checkpointing and reverse computation
present special challenges for our desired simulation mode.
There is a large amount (several TB) of application state to
save when simulating 100K-1M network endpoints, causing
a very high storage and time overhead. Checkpoint strate-
gies may not be feasible. Reverse computation also presents
significant challenges since we want to allow arbitrary code
to be executed on real software stacks. If the simulation
proceeds through a simple and well-defined state machine,
programming reverse computation can be straightforward. A
packet sent that empties a queue, e.g. can be reinserted into
the queue. It is not obvious (or likely even possible) to define
reverse computation for arbitrary code. Thus, despite potential
for increased parallelism with optimistic PDES, we pursue a
conservative strategy here.

Conservative approaches generally operate through event

queues []. Each LP maintains an event queue for every LP
it might receive events from (Figures 3,4). Each event queue
has an associated time stamp indicating the last known virtual
time at the other LP. As an LP receives events on a queue,
the new events advance the timestamp In Figure 3, the local
process (LP 0) has synchronized and received events with the
timestamp t = 8 and t = 17 from the remote LPs 1 and 2.
Because the lookahead is � = 10, LP 0 is guaranteed that LP 1
will not deliver anything new with timestamp less than 18 and
LP 2 will not deliver anything with timestamp less than 27.
The local process can therefore safely run Event C at t = 10,
Event B at t = 17 and advance time until t = 18. The local
process now stalls and is unable to run Event D. In the next
synchronization, LP 0 receives Event E with time t = 19.
It has not received any new messages from LP 2, but it can
still advance its time window until t = 27 and can safely run
Event E and Event D. This scheme requires an LP to regularly
receive events on each queue. If no events are received, the
queue time is never updated and an LP will block waiting for
updates. If such a block occurs, an LP must send so-called
null messages to “request” a time update. Once a new time
update is received, the LP can advance its time window and
run more events.

This scheme can be highly efficient for certain workloads.
Even if there are 100 LPs, each LP might only communi-
cate with, e.g., 3 other neighbors. Only local point-to-point
communication is required to synchronize times rather than a
global communication. When many events are sent between
LPs (i.e null messages are not needed), it also provides some
degree of asynchrony as LPs do not explicitly block waiting on
each other. For our workloads, however, the above algorithm
becomes highly inefficient. In many network topologies and
models, each LP is connected to every other LP, erasing
the benefit of local communication. Furthermore, our simula-
tor emphasizes coarse-grained compute and network models.
Large time gaps often exist between consecutive events, often
much larger than the lookahead. This leads to a pathological
situation in which LPs are consumed sending null messages
back and forth.

while t < t
termination

do
Run all events until t+ �
Log event sends to S = {NLP0

events

, NLP0
bytes

, NLP1
events

, . . .}
MPI ReduceScatter with SUM array S
MPI ReduceScatter returns N total

events

, N total

bytes

N left

bytes

= N total

bytes

for msgNum < N total

events

do
MPI Recv(void*, MPI ANY, N left

bytes

)
N left

bytes

= N left

bytes

�msgSize
end for
Determine tlocal

min

MPI Allreduce(tglobal
min

, tlocal
min

)
t = tglobal

min

end while

Here we instead use a global synchronization algorithm.
While in some ways the simplest, it actually represents an
optimization on the event queue framework for workloads en-
countered with macroscale SST. The simulation begins at t = 0
with lookahead � determined from the network parameters. We
consider a simulation with N

lp

logical processes. Within the

What	 makes	 us	 write	 ad-‐hoc	 code	 instead	 of	
leverage	 exis%ng	 code?	 	
§  Lack	 of	 standards	
§  Lack	 of	 documenta%on	
§  Huge	 monolithic	 code	 bases	 	
§  Compa%bility	 across	 platorms	
§  A	 million	 and	 one	 dependencies	
§  Physical	 models	 dependent	 upon	 simula%on	 framework	

13	

Experiments we care about are model-driven –
simulator is a tool to get us what we really care about!

Virtual()me(

Time(window(

LP(0(

LP(1(

Scheduling(future(events(

Design	 considera%ons	 for	 an	 op%mal	 	
high	 fidelity	 (cycle-‐level)	 simulator	 	
§  Many	 events	 per	 %me	 window	
§  No	 major	 %me	 gaps	 (generally	 always	 have	 events)	
§  Components	 with	 different	 link	 latencies	 and	 clocks	
§  Domain	 specific	 synchroniza%on	 algorithms	

14	

Design	 considera%ons	 for	 an	 	
op%mal	 coarse-‐grained	 structural	 simulator	
§  May	 have	 a	 few	 events	 per	 %me	 window	 –	 or	 might	 have	 a	 lot	
§  Can	 have	 large	 gaps	 	 -‐	 %me	 windows	 with	 no	 events	 in	 them	
§  Huge	 number	 of	 components,	 but	 with	 the	 same	 link	 latency	

15	

Router/
Switch

Router/
Switch

Node

NIC

Node

NIC

Abstract machine model with
congestion via buffers and queues

Design	 considera%ons	 for	 an	 	
op%mal	 coarse-‐grained	 structural	 simulator	
§  May	 have	 a	 few	 events	 per	 %me	 window	 –	 or	 might	 have	 a	 lot	
§  Can	 have	 large	 gaps	 	 -‐	 %me	 windows	 with	 no	 events	 in	 them	
§  Huge	 number	 of	 components,	 but	 with	 the	 same	 link	 latency	

16	

Virtual()me(

Time(window(

LP(0(

LP(1(

Scheduling(future(events(

Compute call might take
5ms but link latencies in
the network are only
100ns!

MPI calls start
generating
network traffic

Design	 considera%ons	 for	 an	 	
op%mal	 coarse-‐grained	 structural	 simulator	
§  May	 have	 a	 few	 events	 per	 %me	 window	 –	 or	 might	 have	 a	 lot	
§  Can	 have	 large	 gaps	 	 -‐	 %me	 windows	 with	 no	 events	 in	 them	
§  Huge	 number	 of	 components,	 but	 with	 the	 same	 link	 latency	

17	

Router/
Switch

Compute
Nodes

LP 0 LP 3

LP 1 LP 2

Design	 considera%ons	 for	 a	 simulator	 	
based	 on	 analy%cal	 models	
§  Only	 a	 few	 events	 per	 %me	 window	
§  Many	 different	 components,	 but	 all	 connected	 to	 each	 other	

18	

Compute
Node

Compute
Node

Compute
Node

Compute
Node

Compute
Node

Compute
Node

α = Latency
β = Inverse bandwidth

N =Message size

ΔT=α + β N

Unifying	 elements	 across	 all	 fideli%es	

§  Sending	 network	 messages	
§  Portability	 layer	 to	 network	 APIs	
§  Serializa%on	 library	 for	 event	 objects	

§  Local/global	 virtual	 %me	
§  Event	 ordering	 and	 correctness	
§  Model	 input	 and	 sta%s%cs	 collec%on	

§  Par%%oning	 components	 across	
parallel	 workers	
§  Mapping	 of	 LPs	 to	 physical	 nodes	
§  Op%mize	 par%%on	 for	 cheaper	

communica%on	

§  Managing/scheduling	 events	
§  Map/calendar/heap	 data	 structures	
§  Cancel	 events	

19	

Unifying	 elements	 across	 all	 fideli%es	

§  Sending	 network	 messages	
§  Portability	 layer	 to	 network	 APIs	
§  Serializa%on	 library	 for	 event	 objects	

§  Local/global	 virtual	 %me	
§  Event	 ordering	 and	 correctness	
§  Model	 input	 and	 sta%s%cs	 collec%on	

§  Par%%oning	 components	 across	
parallel	 workers	
§  Mapping	 of	 LPs	 to	 physical	 nodes	
§  Op%mize	 par%%on	 for	 cheaper	

communica%on	

§  Managing/scheduling	 events	
§  Map/calendar/heap	 data	 structures	
§  Cancel	 events	

20	

Unifying	 elements	 across	 all	 fideli%es	

§  Sending	 network	 messages	
§  Portability	 layer	 to	 network	 APIs	
§  Serializa%on	 library	 for	 event	 objects	

§  Local/global	 virtual	 %me	
§  Event	 ordering	 and	 correctness	
§  Model	 input	 and	 sta%s%cs	 collec%on	

§  Par%%oning	 components	 across	
parallel	 workers	
§  Mapping	 of	 LPs	 to	 physical	 nodes	
§  Op%mize	 par%%on	 for	 cheaper	

communica%on	

§  Managing/scheduling	 events	
§  Map/calendar/heap	 data	 structures	
§  Cancel	 events	

21	

Coarse-grained time

Cycle-level time

Unifying	 elements	 across	 all	 fideli%es	

§  Sending	 network	 messages	
§  Portability	 layer	 to	 network	 APIs	
§  Serializa%on	 library	 for	 event	 objects	

§  Local/global	 virtual	 %me	
§  Event	 ordering	 and	 correctness	
§  Model	 input	 and	 sta%s%cs	 collec%on	

§  Par%%oning	 components	 across	
parallel	 workers	
§  Mapping	 of	 LPs	 to	 physical	 nodes	
§  Op%mize	 par%%on	 for	 cheaper	

communica%on	

§  Managing/scheduling	 events	
§  Map/calendar/heap	 data	 structures	
§  Cancel	 events	

22	

Unifying	 elements	 across	 all	 fideli%es	

§  Sending	 network	 messages	
§  Portability	 layer	 to	 network	 APIs	
§  Serializa%on	 library	 for	 event	 objects	

§  Local/global	 virtual	 %me	
§  Event	 ordering	 and	 correctness	
§  Model	 input	 and	 sta%s%cs	 collec%on	

§  Par%%oning	 components	 across	
parallel	 workers	
§  Mapping	 of	 LPs	 to	 physical	 nodes	
§  Op%mize	 par%%on	 for	 cheaper	

communica%on	

§  Managing/scheduling	 events	
§  Map/calendar/heap	 data	 structures	
§  Cancel	 events	

23	

T=1,T=
2, T=3

T=7 T=17,
T=19

T=25 T=36

T=100

O(Log(N))
heap

O(1) calendar

Disunifying	 elements	 across	 fideli%es:	 	
par%%oning	 strategy	 and	 parallel	 algorithm	
§  Par%%oning	 strategy	

§  Cycle-‐level	 has	 heterogeneous	 components	 –	 par%%oning	 really	 requires	
intelligent	 graph	 par%%oner	

§  Coarse-‐grained	 has	 many	 homogenous	 components	 –	 par%%oning	 s%ll	
requires	 intelligent	 par%%oner,	 but	 more	 about	 minimizing	 graph	 connec%vity	
than	 best	 link	 latency	

§  Parallel	 algorithm	
§  Global	 assump%ons	 on	 interoperability	 components	

§  Can	 any	 memory	 subsystem	 model	 interact	 with	 any	 processor	 or	 network	
model?	 Or	 are	 event	 messages	 only	 “self-‐compa%ble”?	

24	

Polymorphic	 components	 can	 be	 tuned	
for	 different	 problems	
§  Components	 don’t	 need	 to	 be	 aware	 of	 par%%oning	 strategy	
§  Components	 don’t	 need	 to	 be	 aware	 of	 parallel	 algorithm	

25	

The Simulation framework consists of a i) Core and ii) interacting Components that form the
architecture simulation model. The core provides services common across models, such as

instantiating components, providing configuration information, partitioning models for parallel

execution, coordinating a common concept of time (e.g., in parallel execution), and transparently

handling parallel and local communication of events between model components. Model

components communicate through Links which deliver Events between components. Proper
temporal sequencing of component execution and event delivery is transparently handled by the

core. Thus architecture component models are easily re-used and shared across system-level

simulation models. Parallel execution is handled by partitioning the simulation model and

assigning components to physical cores in a target parallel machine.

A key principle of the design is that model components are oblivious to sequential or parallel

execution, and hence are transparently reusable in multiple simulation scenarios. For example,

when events are communicated between components over a link, the component is unaware

whether the destination component is local or remote. Delivery is handled by the core including

any serialization necessary for remote communication in the event that the destination core is

remotely located.

The simulation model as a whole is specified via a system description that specifies

components, their interconnection, and their configuration including component-level and

system-level parameters. The latter are used in transparently partitioning the model for parallel

execution. Our current efforts are focused on two main aspects of the preceding framework - i)

the core API, and ii) the component API. These efforts have been influenced by several ongoing

projects notably SST, GEM5, and Manifold. Preliminary efforts at migrating models between SST

and Manifold supports the anticipated benefits of the common API.

A Call To Arms
Our position is that this API is critical for the architecture community, but requires broad support

to be successful. We ask for community input and collaboration on this ongoing design project.

Please join in this effort by signing up to our mailing list ______ and visiting our design wiki

______.

Challenge	 problem:	 mixing	 fideli%es	

26	

LP	 with	 heavy-‐weight	 node	 opera%ng	 on	 different	 %me	 scales,	 but	 look	
ahead	 determined	 by	 coarse-‐grained	 links!	

Router/
Switch

Compute
Nodes

Challenge	 problem:	 mixing	 fideli%es	

27	

Router/
Switch

Compute
Nodes

Par%%on	 creates	 op%mal	
lookahead	 on	 high	 latency	 links	

Challenge	 problem:	 mixing	 fideli%es	

28	

Router/
Switch

Compute
Nodes Good partitioning balances

number of events per LP

Challenge	 problem:	 mixing	 fideli%es	

29	

Router/
Switch

Compute
Nodes

Simulator core
problem, not a
domain-specific
problem

Challenge	 problem:	 histogram	 of	 	
message	 delays	 in	 PDES	 run	
§  Tag	 packet	 going	 out,	 going	 in	 with	 %me	

§  Add	 single	 field	 to	 exis%ng	 network	 message	 object	
§  No%on	 of	 global	 %me	

§  Histogram	 object	 that	 reduces/collects	 data	
§  hist-‐>add_one(delay)	
§  Object	 must	 output	 usable	 data	 format/figure	 at	 end	 of	 simula%on	
§  Data	 must	 be	 reduced	 across	 LPs	

30	

Minimal routing Adaptive routing

Challenge	 problem:	 histogram	 of	 	
message	 delays	 in	 PDES	 run	

Majority	 of	 work	 should	 already	 be	 	
done	 for	 us	 in	 common	 core!	

31	

Minimal routing Adaptive routing

MODSIM	 is	 Camp	 David,	 not	 Sinai	

32	

Structural simulation toolkit at Sandia (SST) is a jumping
off point for discussing universal simulation standards,
not C++ framework written on stone tablets!

MODSIM	 is	 Camp	 David,	 not	 Sinai	

33	

We think our PDES core is mature and lightweight
enough to make your life easer – enable you to use your
own code, not force you to use ours!

Range	 of	 simula%on:	 success	 stories	 so	 far	

34	

Coarse grain
+ analytic

Coarse grain Cycle Level Mixed
fidelity

The Simulation framework consists of a i) Core and ii) interacting Components that form the
architecture simulation model. The core provides services common across models, such as

instantiating components, providing configuration information, partitioning models for parallel

execution, coordinating a common concept of time (e.g., in parallel execution), and transparently

handling parallel and local communication of events between model components. Model

components communicate through Links which deliver Events between components. Proper
temporal sequencing of component execution and event delivery is transparently handled by the

core. Thus architecture component models are easily re-used and shared across system-level

simulation models. Parallel execution is handled by partitioning the simulation model and

assigning components to physical cores in a target parallel machine.

A key principle of the design is that model components are oblivious to sequential or parallel

execution, and hence are transparently reusable in multiple simulation scenarios. For example,

when events are communicated between components over a link, the component is unaware

whether the destination component is local or remote. Delivery is handled by the core including

any serialization necessary for remote communication in the event that the destination core is

remotely located.

The simulation model as a whole is specified via a system description that specifies

components, their interconnection, and their configuration including component-level and

system-level parameters. The latter are used in transparently partitioning the model for parallel

execution. Our current efforts are focused on two main aspects of the preceding framework - i)

the core API, and ii) the component API. These efforts have been influenced by several ongoing

projects notably SST, GEM5, and Manifold. Preliminary efforts at migrating models between SST

and Manifold supports the anticipated benefits of the common API.

A Call To Arms
Our position is that this API is critical for the architecture community, but requires broad support

to be successful. We ask for community input and collaboration on this ongoing design project.

Please join in this effort by signing up to our mailing list ______ and visiting our design wiki

______.

+Eiger	

Logic

clk

clk
cond

input

clk

Common Core

+GEM5	

MODSIM	 Summary	

§  Gaps:	 	
§  Lack	 of	 standards,	 lack	 of	 code	 reuse	

§  Bigger	 picture	 and	 poten%al	 collaborators:	 	
§  Everyone?	 Anyone	 who	 wants	 to	 scale	 experiments	 through	 PDES	 or	 wants	 to	

compose	 models	 mixing	 different	 fidelity/physics	

§  What	 would	 make	 it	 easier	 to	 leverage	 results	 from	 other	 groups?	
§  If	 you	 find	 yourself	 wri%ng	 a	 PDES	 core,	 who	 you	 gonna	 call…	 	

§  Development/adop5on	 of	 standards	 will	 be	 driven	 by	
collabora5on	 and	 refined	 through	 use	 cases	

35	

